File size: 6,948 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class CMStochasticIterativeSchedulerTest(SchedulerCommonTest):
scheduler_classes = (CMStochasticIterativeScheduler,)
num_inference_steps = 10
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 201,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**kwargs)
return config
# Override test_step_shape to add CMStochasticIterativeScheduler-specific logic regarding timesteps
# Problem is that we don't know two timesteps that will always be in the timestep schedule from only the scheduler
# config; scaled sigma_max is always in the timestep schedule, but sigma_min is in the sigma schedule while scaled
# sigma_min is not in the timestep schedule
def test_step_shape(self):
num_inference_steps = 10
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep_0 = scheduler.timesteps[0]
timestep_1 = scheduler.timesteps[1]
sample = self.dummy_sample
residual = 0.1 * sample
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_clip_denoised(self):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=clip_denoised)
def test_full_loop_no_noise_onestep(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 1
scheduler.set_timesteps(num_inference_steps)
timesteps = scheduler.timesteps
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(timesteps):
# 1. scale model input
scaled_sample = scheduler.scale_model_input(sample, t)
# 2. predict noise residual
residual = model(scaled_sample, t)
# 3. predict previous sample x_t-1
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
sample = pred_prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 192.7614) < 1e-2
assert abs(result_mean.item() - 0.2510) < 1e-3
def test_full_loop_no_noise_multistep(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [106, 0]
scheduler.set_timesteps(timesteps=timesteps)
timesteps = scheduler.timesteps
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
scaled_sample = scheduler.scale_model_input(sample, t)
# 2. predict noise residual
residual = model(scaled_sample, t)
# 3. predict previous sample x_t-1
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
sample = pred_prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 347.6357) < 1e-2
assert abs(result_mean.item() - 0.4527) < 1e-3
def test_full_loop_with_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
t_start = 8
scheduler.set_timesteps(num_inference_steps)
timesteps = scheduler.timesteps
generator = torch.manual_seed(0)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
noise = self.dummy_noise_deter
timesteps = scheduler.timesteps[t_start * scheduler.order :]
sample = scheduler.add_noise(sample, noise, timesteps[:1])
for t in timesteps:
# 1. scale model input
scaled_sample = scheduler.scale_model_input(sample, t)
# 2. predict noise residual
residual = model(scaled_sample, t)
# 3. predict previous sample x_t-1
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
sample = pred_prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 763.9186) < 1e-2, f" expected result sum 763.9186, but get {result_sum}"
assert abs(result_mean.item() - 0.9947) < 1e-3, f" expected result mean 0.9947, but get {result_mean}"
def test_custom_timesteps_increasing_order(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [39, 30, 12, 15, 0]
with self.assertRaises(ValueError, msg="`timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=timesteps)
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [39, 30, 12, 1, 0]
num_inference_steps = len(timesteps)
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `timesteps`."):
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)
def test_custom_timesteps_too_large(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [scheduler.config.num_train_timesteps]
with self.assertRaises(
ValueError,
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
):
scheduler.set_timesteps(timesteps=timesteps)
|