File size: 10,298 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class PNDMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (PNDMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.prk_timesteps):
residual = model(sample, t)
sample = scheduler.step_prk(residual, t, sample).prev_sample
for i, t in enumerate(scheduler.plms_timesteps):
residual = model(sample, t)
sample = scheduler.step_plms(residual, t, sample).prev_sample
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
scheduler.ets = dummy_past_residuals[:]
output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_steps_offset(self):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=steps_offset)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(steps_offset=1)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(10)
assert torch.equal(
scheduler.timesteps,
torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]
),
)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_time_indices(self):
for t in [1, 5, 10]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
self.check_over_forward(num_inference_steps=num_inference_steps)
def test_pow_of_3_inference_steps(self):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
num_inference_steps = 27
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2]):
sample = scheduler.step_prk(residual, t, sample).prev_sample
def test_inference_plms_no_past_residuals(self):
with self.assertRaises(ValueError):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 198.1318) < 1e-2
assert abs(result_mean.item() - 0.2580) < 1e-3
def test_full_loop_with_v_prediction(self):
sample = self.full_loop(prediction_type="v_prediction")
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 67.3986) < 1e-2
assert abs(result_mean.item() - 0.0878) < 1e-3
def test_full_loop_with_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 230.0399) < 1e-2
assert abs(result_mean.item() - 0.2995) < 1e-3
def test_full_loop_with_no_set_alpha_to_one(self):
# We specify different beta, so that the first alpha is 0.99
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 186.9482) < 1e-2
assert abs(result_mean.item() - 0.2434) < 1e-3
|