File size: 14,368 Bytes
71e02e7 2717a45 71e02e7 2717a45 71e02e7 352e0aa 71e02e7 352e0aa 71e02e7 207863e 71e02e7 207863e 71e02e7 7c856a7 71e02e7 7c856a7 71e02e7 352e0aa a8b8028 352e0aa 49dac03 867e309 49dac03 837cf75 49dac03 867e309 49dac03 837cf75 49dac03 867e309 49dac03 837cf75 49dac03 867e309 49dac03 867e309 49dac03 80f7eda 71e02e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# AnimatedDiff ControlNet SDXL Example
This document provides a step-by-step guide to setting up and running the `animatediff_controlnet_sdxl.py` script from the Hugging Face repository. The script leverages the `diffusers-sdxl-controlnet` library to generate animated images using ControlNet and SDXL models.
## Prerequisites
Before running the script, ensure you have the necessary dependencies installed. You can install them using the following commands:
### System Dependencies
```bash
sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg
```
### Python Dependencies
```bash
pip install git+https://huggingface.co/svjack/diffusers-sdxl-controlnet
pip install transformers peft sentencepiece moviepy==1.0.3 controlnet_aux
```
### Clone the Repository
```bash
git clone https://huggingface.co/svjack/diffusers-sdxl-controlnet
cp diffusers-sdxl-controlnet/girl-pose.gif .
cp diffusers-sdxl-controlnet/girl_beach.mp4 .
```
## Script Modifications
The script requires some modifications to work correctly. Specifically, you need to comment out certain lines related to LoRA processors:
```python
'''
drop #LoRAAttnProcessor2_0,
#LoRAXFormersAttnProcessor,
'''
```
## GIF to Frames Conversion
The script includes a function to convert a GIF into individual frames. This is useful for preparing input data for the animation pipeline.
```python
from PIL import Image, ImageSequence
import os
def gif_to_frames(gif_path, output_folder):
# Open the GIF file
gif = Image.open(gif_path)
# Ensure the output folder exists
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# Iterate through each frame of the GIF
for i, frame in enumerate(ImageSequence.Iterator(gif)):
# Copy the frame
frame_copy = frame.copy()
# Save the frame to the specified folder
frame_path = os.path.join(output_folder, f"frame_{i:04d}.png")
frame_copy.save(frame_path)
print(f"Successfully extracted {i + 1} frames to {output_folder}")
# Example call
gif_to_frames("girl-pose.gif", "girl_pose_frames")
```
### Use this girl pose as pose source video (gif)
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/6oTdxQtI0nLGq2YB4KYTh.gif)
## Running the Script
To run the script, follow these steps:
1. **Add the Script Path to System Path**:
```python
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
from controlnet_aux.processor import Processor
```
2. **Load Necessary Libraries and Models**:
```python
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler
from diffusers.utils import export_to_gif
from diffusers import AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import load_image
from PIL import Image
```
3. **Load the MotionAdapter Model**:
```python
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta",
torch_dtype=torch.float16
)
```
4. **Configure the Scheduler and ControlNet**:
```python
model_id = "svjack/GenshinImpact_XL_Base"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
controlnet = ControlNetModel.from_pretrained(
"thibaud/controlnet-openpose-sdxl-1.0",
torch_dtype=torch.float16,
).to("cuda")
```
5. **Load the AnimateDiffSDXLControlnetPipeline**:
```python
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
```
6. **Enable Memory Saving Features**:
```python
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
```
7. **Load Conditioning Frames**:
```python
import os
folder_path = "girl_pose_frames/"
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path ,x)).resize((1024, 1024)), frames))[:16]
```
8. **Process Conditioning Frames**:
```python
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
```
9. **Define Prompts**:
```python
prompt = '''
solo,Xiangling\(genshin impact\),1girl,
full body professional photograph of a stunning detailed, sharp focus, dramatic
cinematic lighting, octane render unreal engine (film grain, blurry background
'''
prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
```
10. **Generate Output**: (Use Genshin Impact character Xiangling)
```python
prompt = '''
solo,Xiangling\(genshin impact\),1girl,
full body professional photograph of a stunning detailed, sharp focus, dramatic
cinematic lighting, octane render unreal engine (film grain, blurry background
'''
prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
#prompt = "solo,Xiangling\(genshin impact\),1girl"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
guidance_scale=20,
controlnet_conditioning_scale = 1.0,
width=512,
height=768,
num_frames=16,
conditioning_frames=cn2,
generator = generator
)
```
11. **Export Frames to GIF**:
```python
frames = output.frames[0]
export_to_gif(frames, "xiangling_animation.gif")
```
12. **Display the Result**:
```python
from IPython import display
display.Image("xiangling_animation.gif")
```
### Target gif
<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
<div style="margin-right: 10px;">
<img src="xiangling_animation.gif" alt="Image 1" style="width: 512px; height: 768px;">
</div>
</div>
### Use Anime Upscale in https://github.com/svjack/APISR
<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
<div style="margin-left: 10px;">
<img src="xiangling_animation_frames_4x.gif" alt="Image 2" style="width: 512px; height: 768px;">
</div>
</div>
### Run in Command line
- animatediff_controlnet_sdxl_run_script.py
```python
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
import argparse
from moviepy.editor import VideoFileClip, ImageSequenceClip
import os
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import export_to_gif
from PIL import Image
from controlnet_aux.processor import Processor
# 初始化 MotionAdapter 和 ControlNetModel
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
def initialize_pipeline(model_id):
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")
# 初始化 AnimateDiffSDXLControlnetPipeline
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
return pipe
def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
"""
将视频处理成指定帧数的视频,并保持原始的帧率。
:param input_video_path: 输入视频文件路径
:param num_frames: 目标帧数
:param temp_folder: 临时文件夹路径
"""
clip = VideoFileClip(input_video_path)
original_duration = clip.duration
segment_duration = original_duration / num_frames
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
for i in range(num_frames):
frame_time = i * segment_duration
frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
clip.save_frame(frame_path, t=frame_time)
frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
final_clip.write_videofile("resampled_video.mp4", codec='libx264')
print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")
def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames', num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=1.0, width=512, height=768):
"""
生成带有文本提示的视频。
:param input_video_path: 输入视频文件路径
:param prompt: 文本提示
:param model_id: 模型ID
:param gif_output_path: GIF 输出文件路径
:param seed: 随机种子
:param num_frames: 目标帧数
:param keep_imgs: 是否保留临时图片
:param temp_folder: 临时文件夹路径
:param num_inference_steps: 推理步数
:param guidance_scale: 引导比例
:param controlnet_conditioning_scale: ControlNet 条件比例
:param width: 输出宽度
:param height: 输出高度
"""
split_video_into_frames(input_video_path, num_frames, temp_folder)
folder_path = temp_folder
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe = initialize_pipeline(model_id)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=width,
height=height,
num_frames=num_frames,
conditioning_frames=cn2,
generator=generator
)
frames = output.frames[0]
export_to_gif(frames, gif_output_path)
print(f"生成的 GIF 已保存到 {gif_output_path}")
if not keep_imgs:
# 删除临时文件夹
import shutil
shutil.rmtree(temp_folder)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
parser.add_argument("input_video", help="输入视频文件路径")
parser.add_argument("prompt", help="文本提示")
parser.add_argument("model_id", help="模型ID")
parser.add_argument("gif_output_path", help="GIF 输出文件路径")
parser.add_argument("--seed", type=int, default=0, help="随机种子")
parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
parser.add_argument("--num_inference_steps", type=int, default=50, help="推理步数")
parser.add_argument("--guidance_scale", type=float, default=20.0, help="引导比例")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=1.0, help="ControlNet 条件比例")
parser.add_argument("--width", type=int, default=512, help="输出宽度")
parser.add_argument("--height", type=int, default=768, help="输出高度")
args = parser.parse_args()
generate_video_with_prompt(args.input_video, args.prompt, args.model_id, args.gif_output_path, args.seed, args.num_frames,
args.keep_imgs, args.temp_folder, args.num_inference_steps, args.guidance_scale, args.controlnet_conditioning_scale, args.width, args.height)
```
```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
"solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed, drink tea use chinese cup" \
"svjack/GenshinImpact_XL_Base" \
xiangling_tea_animation.gif --num_frames 16 --temp_folder temp_frames
```
- Pose: girl_beach.mp4
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/pYx23VyLNkLk3YxAAqu5i.mp4"></video>
- Output: xiangling_tea_animation.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/qUZOvGs5rzxN8zaZ4Xp3s.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/uwUDYOPiZbHuq5v6jWADr.mp4"></video>
### Some Other Samples
- produce_gif_script.py
```bash
python produce_gif_script.py xiangling_video_seed.csv "svjack/GenshinImpact_XL_Base" xiangling_gif_dir \
--num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
```
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/R2SpiNASjQj8k_wrZDJA5.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ssJZD1SXLLu4EdpSZKcP2.gif)]()
## Conclusion
This script demonstrates how to use the `diffusers-sdxl-controlnet` library to generate animated images with ControlNet and SDXL models. By following the steps outlined above, you can create and visualize your own animated sequences.
|