File size: 19,347 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# -*- coding: utf-8 -*-
import inspect
from typing import Optional, Union
import numpy as np
import PIL.Image
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import PIL_INTERPOLATION
from diffusers.utils.torch_utils import randn_tensor
def preprocess(image, w, h):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
input_device = v0.device
v0 = v0.cpu().numpy()
v1 = v1.cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(input_device)
return v2
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPFeatureExtractor,
coca_model=None,
coca_tokenizer=None,
coca_transform=None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
)
self.feature_extractor_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
if not isinstance(image, torch.Tensor):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}")
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
init_latents = 0.18215 * init_latents
init_latents = init_latents.repeat_interleave(batch_size, dim=0)
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def get_image_description(self, image):
transformed_image = self.coca_transform(image).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype))
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,")
def get_clip_image_embeddings(self, image, batch_size):
clip_image_input = self.feature_extractor.preprocess(image)
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0)
return image_embeddings_clip
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
original_image_embeddings_clip,
clip_guidance_scale,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
sample = 1 / 0.18215 * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = transforms.Resize(self.feature_extractor_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
style_image: Union[torch.Tensor, PIL.Image.Image],
content_image: Union[torch.Tensor, PIL.Image.Image],
style_prompt: Optional[str] = None,
content_prompt: Optional[str] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
noise_strength: float = 0.6,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
batch_size: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
slerp_latent_style_strength: float = 0.8,
slerp_prompt_style_strength: float = 0.1,
slerp_clip_image_style_strength: float = 0.1,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if isinstance(generator, torch.Generator) and batch_size > 1:
generator = [generator] + [None] * (batch_size - 1)
coca_is_none = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
coca_is_none = [x[0] for x in coca_is_none if x[1]]
coca_is_none_str = ", ".join(coca_is_none)
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
content_prompt = self.get_image_description(content_image)
if style_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
style_prompt = self.get_image_description(style_image)
# get prompt text embeddings for content and style
content_text_input = self.tokenizer(
content_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0]
style_text_input = self.tokenizer(
style_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0]
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device)
latent_timestep = timesteps[:1].repeat(batch_size)
# Preprocess image
preprocessed_content_image = preprocess(content_image, width, height)
content_latents = self.prepare_latents(
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
preprocessed_style_image = preprocess(style_image, width, height)
style_latents = self.prepare_latents(
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
latents = slerp(slerp_latent_style_strength, content_latents, style_latents)
if clip_guidance_scale > 0:
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size)
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size)
clip_image_embeddings = slerp(
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = content_text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
clip_image_embeddings,
clip_guidance_scale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
progress_bar.update()
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|