File size: 64,653 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import copy
import functools
import gc
import itertools
import json
import logging
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from typing import List, Union
import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
import transformers
import webdataset as wds
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from braceexpand import braceexpand
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict
from torch.utils.data import default_collate
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
LCMScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
MAX_SEQ_LENGTH = 77
# Adjust for your dataset
WDS_JSON_WIDTH = "width" # original_width for LAION
WDS_JSON_HEIGHT = "height" # original_height for LAION
MIN_SIZE = 700 # ~960 for LAION, ideal: 1024 if the dataset contains large images
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.30.0.dev0")
logger = get_logger(__name__)
def get_module_kohya_state_dict(module, prefix: str, dtype: torch.dtype, adapter_name: str = "default"):
kohya_ss_state_dict = {}
for peft_key, weight in get_peft_model_state_dict(module, adapter_name=adapter_name).items():
kohya_key = peft_key.replace("base_model.model", prefix)
kohya_key = kohya_key.replace("lora_A", "lora_down")
kohya_key = kohya_key.replace("lora_B", "lora_up")
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
kohya_ss_state_dict[kohya_key] = weight.to(dtype)
# Set alpha parameter
if "lora_down" in kohya_key:
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
kohya_ss_state_dict[alpha_key] = torch.tensor(module.peft_config[adapter_name].lora_alpha).to(dtype)
return kohya_ss_state_dict
def filter_keys(key_set):
def _f(dictionary):
return {k: v for k, v in dictionary.items() if k in key_set}
return _f
def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to
lower case (Default value = True)
"""
current_sample = None
for filesample in data:
assert isinstance(filesample, dict)
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset
if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample:
if valid_sample(current_sample):
yield current_sample
current_sample = {"__key__": prefix, "__url__": filesample["__url__"]}
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_nothrow(files, handler=handler)
return samples
class WebdatasetFilter:
def __init__(self, min_size=1024, max_pwatermark=0.5):
self.min_size = min_size
self.max_pwatermark = max_pwatermark
def __call__(self, x):
try:
if "json" in x:
x_json = json.loads(x["json"])
filter_size = (x_json.get(WDS_JSON_WIDTH, 0.0) or 0.0) >= self.min_size and x_json.get(
WDS_JSON_HEIGHT, 0
) >= self.min_size
filter_watermark = (x_json.get("pwatermark", 0.0) or 0.0) <= self.max_pwatermark
return filter_size and filter_watermark
else:
return False
except Exception:
return False
class SDXLText2ImageDataset:
def __init__(
self,
train_shards_path_or_url: Union[str, List[str]],
num_train_examples: int,
per_gpu_batch_size: int,
global_batch_size: int,
num_workers: int,
resolution: int = 1024,
interpolation_type: str = "bilinear",
shuffle_buffer_size: int = 1000,
pin_memory: bool = False,
persistent_workers: bool = False,
use_fix_crop_and_size: bool = False,
):
if not isinstance(train_shards_path_or_url, str):
train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url]
# flatten list using itertools
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url))
def get_orig_size(json):
if use_fix_crop_and_size:
return (resolution, resolution)
else:
return (int(json.get(WDS_JSON_WIDTH, 0.0)), int(json.get(WDS_JSON_HEIGHT, 0.0)))
interpolation_mode = resolve_interpolation_mode(interpolation_type)
def transform(example):
# resize image
image = example["image"]
image = TF.resize(image, resolution, interpolation=interpolation_mode)
# get crop coordinates and crop image
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution))
image = TF.crop(image, c_top, c_left, resolution, resolution)
image = TF.to_tensor(image)
image = TF.normalize(image, [0.5], [0.5])
example["image"] = image
example["crop_coords"] = (c_top, c_left) if not use_fix_crop_and_size else (0, 0)
return example
processing_pipeline = [
wds.decode("pil", handler=wds.ignore_and_continue),
wds.rename(
image="jpg;png;jpeg;webp", text="text;txt;caption", orig_size="json", handler=wds.warn_and_continue
),
wds.map(filter_keys({"image", "text", "orig_size"})),
wds.map_dict(orig_size=get_orig_size),
wds.map(transform),
wds.to_tuple("image", "text", "orig_size", "crop_coords"),
]
# Create train dataset and loader
pipeline = [
wds.ResampledShards(train_shards_path_or_url),
tarfile_to_samples_nothrow,
wds.select(WebdatasetFilter(min_size=MIN_SIZE)),
wds.shuffle(shuffle_buffer_size),
*processing_pipeline,
wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate),
]
num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) # per dataloader worker
num_batches = num_worker_batches * num_workers
num_samples = num_batches * global_batch_size
# each worker is iterating over this
self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches)
self._train_dataloader = wds.WebLoader(
self._train_dataset,
batch_size=None,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
)
# add meta-data to dataloader instance for convenience
self._train_dataloader.num_batches = num_batches
self._train_dataloader.num_samples = num_samples
@property
def train_dataset(self):
return self._train_dataset
@property
def train_dataloader(self):
return self._train_dataloader
def log_validation(vae, unet, args, accelerator, weight_dtype, step):
logger.info("Running validation... ")
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type, dtype=weight_dtype)
unet = accelerator.unwrap_model(unet)
pipeline = StableDiffusionXLPipeline.from_pretrained(
args.pretrained_teacher_model,
vae=vae,
scheduler=LCMScheduler.from_pretrained(args.pretrained_teacher_model, subfolder="scheduler"),
revision=args.revision,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
lora_state_dict = get_module_kohya_state_dict(unet, "lora_unet", weight_dtype)
pipeline.load_lora_weights(lora_state_dict)
pipeline.fuse_lora()
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
validation_prompts = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
image_logs = []
for _, prompt in enumerate(validation_prompts):
images = []
with autocast_ctx:
images = pipeline(
prompt=prompt,
num_inference_steps=4,
num_images_per_prompt=4,
generator=generator,
guidance_scale=0.0,
).images
image_logs.append({"validation_prompt": prompt, "images": images})
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
formatted_images = []
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.stack(formatted_images)
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
elif tracker.name == "wandb":
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
for image in images:
image = wandb.Image(image, caption=validation_prompt)
formatted_images.append(image)
tracker.log({"validation": formatted_images})
else:
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
gc.collect()
torch.cuda.empty_cache()
return image_logs
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Compare LCMScheduler.step, Step 4
def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas
elif prediction_type == "sample":
pred_x_0 = model_output
elif prediction_type == "v_prediction":
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_x_0
# Based on step 4 in DDIMScheduler.step
def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas):
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
if prediction_type == "epsilon":
pred_epsilon = model_output
elif prediction_type == "sample":
pred_epsilon = (sample - alphas * model_output) / sigmas
elif prediction_type == "v_prediction":
pred_epsilon = alphas * model_output + sigmas * sample
else:
raise ValueError(
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`"
f" are supported."
)
return pred_epsilon
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class DDIMSolver:
def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
# DDIM sampling parameters
step_ratio = timesteps // ddim_timesteps
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
self.ddim_alpha_cumprods_prev = np.asarray(
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
)
# convert to torch tensors
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)
def to(self, device):
self.ddim_timesteps = self.ddim_timesteps.to(device)
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
return self
def ddim_step(self, pred_x0, pred_noise, timestep_index):
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
return x_prev
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
# ----------Model Checkpoint Loading Arguments----------
parser.add_argument(
"--pretrained_teacher_model",
type=str,
default=None,
required=True,
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--teacher_revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM model identifier from huggingface.co/models.",
)
# ----------Training Arguments----------
# ----General Training Arguments----
parser.add_argument(
"--output_dir",
type=str,
default="lcm-xl-distilled",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
# ----Logging----
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
# ----Checkpointing----
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
# ----Image Processing----
parser.add_argument(
"--train_shards_path_or_url",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--resolution",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--use_fix_crop_and_size",
action="store_true",
help="Whether or not to use the fixed crop and size for the teacher model.",
default=False,
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
# ----Dataloader----
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
# ----Batch Size and Training Steps----
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
# ----Learning Rate----
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
# ----Optimizer (Adam)----
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
# ----Diffusion Training Arguments----
parser.add_argument(
"--proportion_empty_prompts",
type=float,
default=0,
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
)
# ----Latent Consistency Distillation (LCD) Specific Arguments----
parser.add_argument(
"--w_min",
type=float,
default=3.0,
required=False,
help=(
"The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
" compared to the original paper."
),
)
parser.add_argument(
"--w_max",
type=float,
default=15.0,
required=False,
help=(
"The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG"
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
" compared to the original paper."
),
)
parser.add_argument(
"--num_ddim_timesteps",
type=int,
default=50,
help="The number of timesteps to use for DDIM sampling.",
)
parser.add_argument(
"--loss_type",
type=str,
default="l2",
choices=["l2", "huber"],
help="The type of loss to use for the LCD loss.",
)
parser.add_argument(
"--huber_c",
type=float,
default=0.001,
help="The huber loss parameter. Only used if `--loss_type=huber`.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=64,
help="The rank of the LoRA projection matrix.",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help=(
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default=None,
help=(
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
" be used. By default, LoRA will be applied to all conv and linear layers."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=8,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Mixed Precision----
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--cast_teacher_unet",
action="store_true",
help="Whether to cast the teacher U-Net to the precision specified by `--mixed_precision`.",
)
# ----Training Optimizations----
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
# ----Distributed Training----
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
# ----------Validation Arguments----------
parser.add_argument(
"--validation_steps",
type=int,
default=200,
help="Run validation every X steps.",
)
# ----------Huggingface Hub Arguments-----------
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
# ----------Accelerate Arguments----------
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-fine-tune",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
return args
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True):
prompt_embeds_list = []
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
captions,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
split_batches=True, # It's important to set this to True when using webdataset to get the right number of steps for lr scheduling. If set to False, the number of steps will be devide by the number of processes assuming batches are multiplied by the number of processes
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name,
exist_ok=True,
token=args.hub_token,
private=True,
).repo_id
# 1. Create the noise scheduler and the desired noise schedule.
noise_scheduler = DDPMScheduler.from_pretrained(
args.pretrained_teacher_model, subfolder="scheduler", revision=args.teacher_revision
)
# DDPMScheduler calculates the alpha and sigma noise schedules (based on the alpha bars) for us
alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod)
sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod)
# Initialize the DDIM ODE solver for distillation.
solver = DDIMSolver(
noise_scheduler.alphas_cumprod.numpy(),
timesteps=noise_scheduler.config.num_train_timesteps,
ddim_timesteps=args.num_ddim_timesteps,
)
# 2. Load tokenizers from SD-XL checkpoint.
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_teacher_model, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_teacher_model, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False
)
# 3. Load text encoders from SD-XL checkpoint.
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_teacher_model, args.teacher_revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_teacher_model, args.teacher_revision, subfolder="text_encoder_2"
)
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_teacher_model, subfolder="text_encoder", revision=args.teacher_revision
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_teacher_model, subfolder="text_encoder_2", revision=args.teacher_revision
)
# 4. Load VAE from SD-XL checkpoint (or more stable VAE)
vae_path = (
args.pretrained_teacher_model
if args.pretrained_vae_model_name_or_path is None
else args.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
revision=args.teacher_revision,
)
# 5. Load teacher U-Net from SD-XL checkpoint
teacher_unet = UNet2DConditionModel.from_pretrained(
args.pretrained_teacher_model, subfolder="unet", revision=args.teacher_revision
)
# 6. Freeze teacher vae, text_encoders, and teacher_unet
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
teacher_unet.requires_grad_(False)
# 7. Create online student U-Net.
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_teacher_model, subfolder="unet", revision=args.teacher_revision
)
unet.train()
# Check that all trainable models are in full precision
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32."
)
if accelerator.unwrap_model(unet).dtype != torch.float32:
raise ValueError(
f"Controlnet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
)
# 8. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
if args.lora_target_modules is not None:
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
else:
lora_target_modules = [
"to_q",
"to_k",
"to_v",
"to_out.0",
"proj_in",
"proj_out",
"ff.net.0.proj",
"ff.net.2",
"conv1",
"conv2",
"conv_shortcut",
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
]
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
unet = get_peft_model(unet, lora_config)
# 9. Handle mixed precision and device placement
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
vae.to(accelerator.device)
if args.pretrained_vae_model_name_or_path is not None:
vae.to(dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
# Move teacher_unet to device, optionally cast to weight_dtype
teacher_unet.to(accelerator.device)
if args.cast_teacher_unet:
teacher_unet.to(dtype=weight_dtype)
# Also move the alpha and sigma noise schedules to accelerator.device.
alpha_schedule = alpha_schedule.to(accelerator.device)
sigma_schedule = sigma_schedule.to(accelerator.device)
# Move the ODE solver to accelerator.device.
solver = solver.to(accelerator.device)
# 10. Handle saving and loading of checkpoints
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
unet_ = accelerator.unwrap_model(unet)
lora_state_dict = get_peft_model_state_dict(unet_, adapter_name="default")
StableDiffusionXLPipeline.save_lora_weights(os.path.join(output_dir, "unet_lora"), lora_state_dict)
# save weights in peft format to be able to load them back
unet_.save_pretrained(output_dir)
for _, model in enumerate(models):
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
# load the LoRA into the model
unet_ = accelerator.unwrap_model(unet)
unet_.load_adapter(input_dir, "default", is_trainable=True)
for _ in range(len(models)):
# pop models so that they are not loaded again
models.pop()
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# 11. Enable optimizations
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
teacher_unet.enable_xformers_memory_efficient_attention()
# target_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# 12. Optimizer creation
optimizer = optimizer_class(
unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# 13. Dataset creation and data processing
# Here, we compute not just the text embeddings but also the additional embeddings
# needed for the SD XL UNet to operate.
def compute_embeddings(
prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True
):
target_size = (args.resolution, args.resolution)
original_sizes = list(map(list, zip(*original_sizes)))
crops_coords_top_left = list(map(list, zip(*crop_coords)))
original_sizes = torch.tensor(original_sizes, dtype=torch.long)
crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long)
prompt_embeds, pooled_prompt_embeds = encode_prompt(
prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train
)
add_text_embeds = pooled_prompt_embeds
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
add_time_ids = list(target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1)
add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1)
add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype)
prompt_embeds = prompt_embeds.to(accelerator.device)
add_text_embeds = add_text_embeds.to(accelerator.device)
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
dataset = SDXLText2ImageDataset(
train_shards_path_or_url=args.train_shards_path_or_url,
num_train_examples=args.max_train_samples,
per_gpu_batch_size=args.train_batch_size,
global_batch_size=args.train_batch_size * accelerator.num_processes,
num_workers=args.dataloader_num_workers,
resolution=args.resolution,
interpolation_type=args.interpolation_type,
shuffle_buffer_size=1000,
pin_memory=True,
persistent_workers=True,
use_fix_crop_and_size=args.use_fix_crop_and_size,
)
train_dataloader = dataset.train_dataloader
# Let's first compute all the embeddings so that we can free up the text encoders
# from memory.
text_encoders = [text_encoder_one, text_encoder_two]
tokenizers = [tokenizer_one, tokenizer_two]
compute_embeddings_fn = functools.partial(
compute_embeddings,
proportion_empty_prompts=0,
text_encoders=text_encoders,
tokenizers=tokenizers,
)
# 14. LR Scheduler creation
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps,
)
# 15. Prepare for training
# Prepare everything with our `accelerator`.
unet, optimizer, lr_scheduler = accelerator.prepare(unet, optimizer, lr_scheduler)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
# Create uncond embeds for classifier free guidance
uncond_prompt_embeds = torch.zeros(args.train_batch_size, 77, 2048).to(accelerator.device)
uncond_pooled_prompt_embeds = torch.zeros(args.train_batch_size, 1280).to(accelerator.device)
# 16. Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num batches each epoch = {train_dataloader.num_batches}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# 1. Load and process the image, text, and micro-conditioning (original image size, crop coordinates)
image, text, orig_size, crop_coords = batch
image = image.to(accelerator.device, non_blocking=True)
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords)
if args.pretrained_vae_model_name_or_path is not None:
pixel_values = image.to(dtype=weight_dtype)
if vae.dtype != weight_dtype:
vae.to(dtype=weight_dtype)
else:
pixel_values = image
# encode pixel values with batch size of at most args.vae_encode_batch_size
latents = []
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size):
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * vae.config.scaling_factor
if args.pretrained_vae_model_name_or_path is None:
latents = latents.to(weight_dtype)
bsz = latents.shape[0]
# 2. Sample a random timestep for each image t_n from the ODE solver timesteps without bias.
# For the DDIM solver, the timestep schedule is [T - 1, T - k - 1, T - 2 * k - 1, ...]
topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps
index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long()
start_timesteps = solver.ddim_timesteps[index]
timesteps = start_timesteps - topk
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# 3. Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(
start_timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(
timesteps, timestep_scaling=args.timestep_scaling_factor
)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each
# timestep (this is the forward diffusion process) [z_{t_{n + k}} in Algorithm 1]
noise = torch.randn_like(latents)
noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps)
# 5. Sample a random guidance scale w from U[w_min, w_max]
# Note that for LCM-LoRA distillation it is not necessary to use a guidance scale embedding
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min
w = w.reshape(bsz, 1, 1, 1)
w = w.to(device=latents.device, dtype=latents.dtype)
# 6. Prepare prompt embeds and unet_added_conditions
prompt_embeds = encoded_text.pop("prompt_embeds")
# 7. Get online LCM prediction on z_{t_{n + k}} (noisy_model_input), w, c, t_{n + k} (start_timesteps)
noise_pred = unet(
noisy_model_input,
start_timesteps,
timestep_cond=None,
encoder_hidden_states=prompt_embeds.float(),
added_cond_kwargs=encoded_text,
).sample
pred_x_0 = get_predicted_original_sample(
noise_pred,
start_timesteps,
noisy_model_input,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0
# 8. Compute the conditional and unconditional teacher model predictions to get CFG estimates of the
# predicted noise eps_0 and predicted original sample x_0, then run the ODE solver using these
# estimates to predict the data point in the augmented PF-ODE trajectory corresponding to the next ODE
# solver timestep.
with torch.no_grad():
if torch.backends.mps.is_available() or "playground" in args.pretrained_teacher_model:
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
# 1. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and conditional embedding c
cond_teacher_output = teacher_unet(
noisy_model_input.to(weight_dtype),
start_timesteps,
encoder_hidden_states=prompt_embeds.to(weight_dtype),
added_cond_kwargs={k: v.to(weight_dtype) for k, v in encoded_text.items()},
).sample
cond_pred_x0 = get_predicted_original_sample(
cond_teacher_output,
start_timesteps,
noisy_model_input,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
cond_pred_noise = get_predicted_noise(
cond_teacher_output,
start_timesteps,
noisy_model_input,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
# 2. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and unconditional embedding 0
uncond_added_conditions = copy.deepcopy(encoded_text)
uncond_added_conditions["text_embeds"] = uncond_pooled_prompt_embeds
uncond_teacher_output = teacher_unet(
noisy_model_input.to(weight_dtype),
start_timesteps,
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype),
added_cond_kwargs={k: v.to(weight_dtype) for k, v in uncond_added_conditions.items()},
).sample
uncond_pred_x0 = get_predicted_original_sample(
uncond_teacher_output,
start_timesteps,
noisy_model_input,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
uncond_pred_noise = get_predicted_noise(
uncond_teacher_output,
start_timesteps,
noisy_model_input,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
# 3. Calculate the CFG estimate of x_0 (pred_x0) and eps_0 (pred_noise)
# Note that this uses the LCM paper's CFG formulation rather than the Imagen CFG formulation
pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0)
pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise)
# 4. Run one step of the ODE solver to estimate the next point x_prev on the
# augmented PF-ODE trajectory (solving backward in time)
# Note that the DDIM step depends on both the predicted x_0 and source noise eps_0.
x_prev = solver.ddim_step(pred_x0, pred_noise, index)
# 9. Get target LCM prediction on x_prev, w, c, t_n (timesteps)
# Note that we do not use a separate target network for LCM-LoRA distillation.
with torch.no_grad():
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type, dtype=weight_dtype)
with autocast_ctx:
target_noise_pred = unet(
x_prev.float(),
timesteps,
timestep_cond=None,
encoder_hidden_states=prompt_embeds.float(),
added_cond_kwargs=encoded_text,
).sample
pred_x_0 = get_predicted_original_sample(
target_noise_pred,
timesteps,
x_prev,
noise_scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
target = c_skip * x_prev + c_out * pred_x_0
# 10. Calculate loss
if args.loss_type == "l2":
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
elif args.loss_type == "huber":
loss = torch.mean(
torch.sqrt((model_pred.float() - target.float()) ** 2 + args.huber_c**2) - args.huber_c
)
# 11. Backpropagate on the online student model (`unet`)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
log_validation(vae, unet, args, accelerator, weight_dtype, global_step)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
unet.save_pretrained(args.output_dir)
lora_state_dict = get_peft_model_state_dict(unet, adapter_name="default")
StableDiffusionXLPipeline.save_lora_weights(os.path.join(args.output_dir, "unet_lora"), lora_state_dict)
if args.push_to_hub:
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
|