File size: 59,941 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
"""Script to train a consistency model from scratch via (improved) consistency training."""

import argparse
import gc
import logging
import math
import os
import shutil
from datetime import timedelta
from pathlib import Path

import accelerate
import datasets
import numpy as np
import torch
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm

import diffusers
from diffusers import (
    CMStochasticIterativeScheduler,
    ConsistencyModelPipeline,
    UNet2DModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel, resolve_interpolation_mode
from diffusers.utils import is_tensorboard_available, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module


if is_wandb_available():
    import wandb


logger = get_logger(__name__, log_level="INFO")


def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def get_discretization_steps(global_step: int, max_train_steps: int, s_0: int = 10, s_1: int = 1280, constant=False):
    """
    Calculates the current discretization steps at global step k using the discretization curriculum N(k).
    """
    if constant:
        return s_0 + 1

    k_prime = math.floor(max_train_steps / (math.log2(math.floor(s_1 / s_0)) + 1))
    num_discretization_steps = min(s_0 * 2 ** math.floor(global_step / k_prime), s_1) + 1

    return num_discretization_steps


def get_skip_steps(global_step, initial_skip: int = 1):
    # Currently only support constant skip curriculum.
    return initial_skip


def get_karras_sigmas(
    num_discretization_steps: int,
    sigma_min: float = 0.002,
    sigma_max: float = 80.0,
    rho: float = 7.0,
    dtype=torch.float32,
):
    """
    Calculates the Karras sigmas timestep discretization of [sigma_min, sigma_max].
    """
    ramp = np.linspace(0, 1, num_discretization_steps)
    min_inv_rho = sigma_min ** (1 / rho)
    max_inv_rho = sigma_max ** (1 / rho)
    sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
    # Make sure sigmas are in increasing rather than decreasing order (see section 2 of the iCT paper)
    sigmas = sigmas[::-1].copy()
    sigmas = torch.from_numpy(sigmas).to(dtype=dtype)
    return sigmas


def get_discretized_lognormal_weights(noise_levels: torch.Tensor, p_mean: float = -1.1, p_std: float = 2.0):
    """
    Calculates the unnormalized weights for a 1D array of noise level sigma_i based on the discretized lognormal"
    " distribution used in the iCT paper (given in Equation 10).
    """
    upper_prob = torch.special.erf((torch.log(noise_levels[1:]) - p_mean) / (math.sqrt(2) * p_std))
    lower_prob = torch.special.erf((torch.log(noise_levels[:-1]) - p_mean) / (math.sqrt(2) * p_std))
    weights = upper_prob - lower_prob
    return weights


def get_loss_weighting_schedule(noise_levels: torch.Tensor):
    """
    Calculates the loss weighting schedule lambda given a set of noise levels.
    """
    return 1.0 / (noise_levels[1:] - noise_levels[:-1])


def add_noise(original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor):
    # Make sure timesteps (Karras sigmas) have the same device and dtype as original_samples
    sigmas = timesteps.to(device=original_samples.device, dtype=original_samples.dtype)
    while len(sigmas.shape) < len(original_samples.shape):
        sigmas = sigmas.unsqueeze(-1)

    noisy_samples = original_samples + noise * sigmas

    return noisy_samples


def get_noise_preconditioning(sigmas, noise_precond_type: str = "cm"):
    """
    Calculates the noise preconditioning function c_noise, which is used to transform the raw Karras sigmas into the
    timestep input for the U-Net.
    """
    if noise_precond_type == "none":
        return sigmas
    elif noise_precond_type == "edm":
        return 0.25 * torch.log(sigmas)
    elif noise_precond_type == "cm":
        return 1000 * 0.25 * torch.log(sigmas + 1e-44)
    else:
        raise ValueError(
            f"Noise preconditioning type {noise_precond_type} is not current supported. Currently supported noise"
            f" preconditioning types are `none` (which uses the sigmas as is), `edm`, and `cm`."
        )


def get_input_preconditioning(sigmas, sigma_data=0.5, input_precond_type: str = "cm"):
    """
    Calculates the input preconditioning factor c_in, which is used to scale the U-Net image input.
    """
    if input_precond_type == "none":
        return 1
    elif input_precond_type == "cm":
        return 1.0 / (sigmas**2 + sigma_data**2)
    else:
        raise ValueError(
            f"Input preconditioning type {input_precond_type} is not current supported. Currently supported input"
            f" preconditioning types are `none` (which uses a scaling factor of 1.0) and `cm`."
        )


def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=1.0):
    scaled_timestep = timestep_scaling * timestep
    c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
    c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
    return c_skip, c_out


def log_validation(unet, scheduler, args, accelerator, weight_dtype, step, name="teacher"):
    logger.info("Running validation... ")

    unet = accelerator.unwrap_model(unet)
    pipeline = ConsistencyModelPipeline(
        unet=unet,
        scheduler=scheduler,
    )
    pipeline = pipeline.to(device=accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    class_labels = [None]
    if args.class_conditional:
        if args.num_classes is not None:
            class_labels = list(range(args.num_classes))
        else:
            logger.warning(
                "The model is class-conditional but the number of classes is not set. The generated images will be"
                " unconditional rather than class-conditional."
            )

    image_logs = []

    for class_label in class_labels:
        images = []
        with torch.autocast("cuda"):
            images = pipeline(
                num_inference_steps=1,
                batch_size=args.eval_batch_size,
                class_labels=[class_label] * args.eval_batch_size,
                generator=generator,
            ).images
        log = {"images": images}
        if args.class_conditional and class_label is not None:
            log["class_label"] = str(class_label)
        else:
            log["class_label"] = "images"
        image_logs.append(log)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for log in image_logs:
                images = log["images"]
                class_label = log["class_label"]
                formatted_images = []
                for image in images:
                    formatted_images.append(np.asarray(image))

                formatted_images = np.stack(formatted_images)

                tracker.writer.add_images(class_label, formatted_images, step, dataformats="NHWC")
        elif tracker.name == "wandb":
            formatted_images = []

            for log in image_logs:
                images = log["images"]
                class_label = log["class_label"]
                for image in images:
                    image = wandb.Image(image, caption=class_label)
                    formatted_images.append(image)

            tracker.log({f"validation/{name}": formatted_images})
        else:
            logger.warning(f"image logging not implemented for {tracker.name}")

    del pipeline
    gc.collect()
    torch.cuda.empty_cache()

    return image_logs


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    # ------------Model Arguments-----------
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        help=(
            "If initializing the weights from a pretrained model, the path to the pretrained model or model identifier"
            " from huggingface.co/models."
        ),
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help=(
            "Variant of the model files of the pretrained model identifier from huggingface.co/models, e.g. `fp16`,"
            " `non_ema`, etc.",
        ),
    )
    # ------------Dataset Arguments-----------
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--dataset_image_column_name",
        type=str,
        default="image",
        help="The name of the image column in the dataset to use for training.",
    )
    parser.add_argument(
        "--dataset_class_label_column_name",
        type=str,
        default="label",
        help="If doing class-conditional training, the name of the class label column in the dataset to use.",
    )
    # ------------Image Processing Arguments-----------
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--interpolation_type",
        type=str,
        default="bilinear",
        help=(
            "The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
            " `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
        ),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--class_conditional",
        action="store_true",
        help=(
            "Whether to train a class-conditional model. If set, the class labels will be taken from the `label`"
            " column of the provided dataset."
        ),
    )
    parser.add_argument(
        "--num_classes",
        type=int,
        default=None,
        help="The number of classes in the training data, if training a class-conditional model.",
    )
    parser.add_argument(
        "--class_embed_type",
        type=str,
        default=None,
        help=(
            "The class embedding type to use. Choose from `None`, `identity`, and `timestep`. If `class_conditional`"
            " and `num_classes` and set, but `class_embed_type` is `None`, a embedding matrix will be used."
        ),
    )
    # ------------Dataloader Arguments-----------
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
    )
    # ------------Training Arguments-----------
    # ----General Training Arguments----
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    # ----Batch Size and Training Length----
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    # ----Learning Rate----
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    # ----Optimizer (Adam) Arguments----
    parser.add_argument(
        "--optimizer_type",
        type=str,
        default="adamw",
        help=(
            "The optimizer algorithm to use for training. Choose between `radam` and `adamw`. The iCT paper uses"
            " RAdam."
        ),
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    # ----Consistency Training (CT) Specific Arguments----
    parser.add_argument(
        "--prediction_type",
        type=str,
        default="sample",
        choices=["sample"],
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
    parser.add_argument(
        "--sigma_min",
        type=float,
        default=0.002,
        help=(
            "The lower boundary for the timestep discretization, which should be set to a small positive value close"
            " to zero to avoid numerical issues when solving the PF-ODE backwards in time."
        ),
    )
    parser.add_argument(
        "--sigma_max",
        type=float,
        default=80.0,
        help=(
            "The upper boundary for the timestep discretization, which also determines the variance of the Gaussian"
            " prior."
        ),
    )
    parser.add_argument(
        "--rho",
        type=float,
        default=7.0,
        help="The rho parameter for the Karras sigmas timestep dicretization.",
    )
    parser.add_argument(
        "--huber_c",
        type=float,
        default=None,
        help=(
            "The Pseudo-Huber loss parameter c. If not set, this will default to the value recommended in the Improved"
            " Consistency Training (iCT) paper of 0.00054 * sqrt(d), where d is the data dimensionality."
        ),
    )
    parser.add_argument(
        "--discretization_s_0",
        type=int,
        default=10,
        help=(
            "The s_0 parameter in the discretization curriculum N(k). This controls the number of training steps after"
            " which the number of discretization steps N will be doubled."
        ),
    )
    parser.add_argument(
        "--discretization_s_1",
        type=int,
        default=1280,
        help=(
            "The s_1 parameter in the discretization curriculum N(k). This controls the upper limit to the number of"
            " discretization steps used. Increasing this value will reduce the bias at the cost of higher variance."
        ),
    )
    parser.add_argument(
        "--constant_discretization_steps",
        action="store_true",
        help=(
            "Whether to set the discretization curriculum N(k) to be the constant value `discretization_s_0 + 1`. This"
            " is useful for testing when `max_number_steps` is small, when `k_prime` would otherwise be 0, causing"
            " a divide-by-zero error."
        ),
    )
    parser.add_argument(
        "--p_mean",
        type=float,
        default=-1.1,
        help=(
            "The mean parameter P_mean for the (discretized) lognormal noise schedule, which controls the probability"
            " of sampling a (discrete) noise level sigma_i."
        ),
    )
    parser.add_argument(
        "--p_std",
        type=float,
        default=2.0,
        help=(
            "The standard deviation parameter P_std for the (discretized) noise schedule, which controls the"
            " probability of sampling a (discrete) noise level sigma_i."
        ),
    )
    parser.add_argument(
        "--noise_precond_type",
        type=str,
        default="cm",
        help=(
            "The noise preconditioning function to use for transforming the raw Karras sigmas into the timestep"
            " argument of the U-Net. Choose between `none` (the identity function), `edm`, and `cm`."
        ),
    )
    parser.add_argument(
        "--input_precond_type",
        type=str,
        default="cm",
        help=(
            "The input preconditioning function to use for scaling the image input of the U-Net. Choose between `none`"
            " (a scaling factor of 1) and `cm`."
        ),
    )
    parser.add_argument(
        "--skip_steps",
        type=int,
        default=1,
        help=(
            "The gap in indices between the student and teacher noise levels. In the iCT paper this is always set to"
            " 1, but theoretically this could be greater than 1 and/or altered according to a curriculum throughout"
            " training, much like the number of discretization steps is."
        ),
    )
    parser.add_argument(
        "--cast_teacher",
        action="store_true",
        help="Whether to cast the teacher U-Net model to `weight_dtype` or leave it in full precision.",
    )
    # ----Exponential Moving Average (EMA) Arguments----
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument(
        "--ema_min_decay",
        type=float,
        default=None,
        help=(
            "The minimum decay magnitude for EMA. If not set, this will default to the value of `ema_max_decay`,"
            " resulting in a constant EMA decay rate."
        ),
    )
    parser.add_argument(
        "--ema_max_decay",
        type=float,
        default=0.99993,
        help=(
            "The maximum decay magnitude for EMA. Setting `ema_min_decay` equal to this value will result in a"
            " constant decay rate."
        ),
    )
    parser.add_argument(
        "--use_ema_warmup",
        action="store_true",
        help="Whether to use EMA warmup.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    # ----Training Optimization Arguments----
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    # ----Distributed Training Arguments----
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    # ------------Validation Arguments-----------
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=200,
        help="Run validation every X steps.",
    )
    parser.add_argument(
        "--eval_batch_size",
        type=int,
        default=16,
        help=(
            "The number of images to generate for evaluation. Note that if `class_conditional` and `num_classes` is"
            " set the effective number of images generated per evaluation step is `eval_batch_size * num_classes`."
        ),
    )
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    # ------------Validation Arguments-----------
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    # ------------Logging Arguments-----------
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    # ------------HuggingFace Hub Arguments-----------
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    # ------------Accelerate Arguments-----------
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="consistency-training",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def main(args):
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200))  # a big number for high resolution or big dataset
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[kwargs],
    )

    if args.report_to == "tensorboard":
        if not is_tensorboard_available():
            raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")

    elif args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # 1. Initialize the noise scheduler.
    initial_discretization_steps = get_discretization_steps(
        0,
        args.max_train_steps,
        s_0=args.discretization_s_0,
        s_1=args.discretization_s_1,
        constant=args.constant_discretization_steps,
    )
    noise_scheduler = CMStochasticIterativeScheduler(
        num_train_timesteps=initial_discretization_steps,
        sigma_min=args.sigma_min,
        sigma_max=args.sigma_max,
        rho=args.rho,
    )

    # 2. Initialize the student U-Net model.
    if args.pretrained_model_name_or_path is not None:
        logger.info(f"Loading pretrained U-Net weights from {args.pretrained_model_name_or_path}... ")
        unet = UNet2DModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
        )
    elif args.model_config_name_or_path is None:
        # TODO: use default architectures from iCT paper
        if not args.class_conditional and (args.num_classes is not None or args.class_embed_type is not None):
            logger.warning(
                f"`--class_conditional` is set to `False` but `--num_classes` is set to {args.num_classes} and"
                f" `--class_embed_type` is set to {args.class_embed_type}. These values will be overridden to `None`."
            )
            args.num_classes = None
            args.class_embed_type = None
        elif args.class_conditional and args.num_classes is None and args.class_embed_type is None:
            logger.warning(
                "`--class_conditional` is set to `True` but neither `--num_classes` nor `--class_embed_type` is set."
                "`class_conditional` will be overridden to `False`."
            )
            args.class_conditional = False
        unet = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
            class_embed_type=args.class_embed_type,
            num_class_embeds=args.num_classes,
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        unet = UNet2DModel.from_config(config)
    unet.train()

    # Create EMA for the student U-Net model.
    if args.use_ema:
        if args.ema_min_decay is None:
            args.ema_min_decay = args.ema_max_decay
        ema_unet = EMAModel(
            unet.parameters(),
            decay=args.ema_max_decay,
            min_decay=args.ema_min_decay,
            use_ema_warmup=args.use_ema_warmup,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
            model_cls=UNet2DModel,
            model_config=unet.config,
        )

    # 3. Initialize the teacher U-Net model from the student U-Net model.
    # Note that following the improved Consistency Training paper, the teacher U-Net is not updated via EMA (e.g. the
    # EMA decay rate is 0.)
    teacher_unet = UNet2DModel.from_config(unet.config)
    teacher_unet.load_state_dict(unet.state_dict())
    teacher_unet.train()
    teacher_unet.requires_grad_(False)

    # 4. Handle mixed precision and device placement
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
        args.mixed_precision = accelerator.mixed_precision
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
        args.mixed_precision = accelerator.mixed_precision

    # Cast teacher_unet to weight_dtype if cast_teacher is set.
    if args.cast_teacher:
        teacher_dtype = weight_dtype
    else:
        teacher_dtype = torch.float32

    teacher_unet.to(accelerator.device)
    if args.use_ema:
        ema_unet.to(accelerator.device)

    # 5. Handle saving and loading of checkpoints.
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                teacher_unet.save_pretrained(os.path.join(output_dir, "unet_teacher"))
                if args.use_ema:
                    ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))

                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))

                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()

        def load_model_hook(models, input_dir):
            load_model = UNet2DModel.from_pretrained(os.path.join(input_dir, "unet_teacher"))
            teacher_unet.load_state_dict(load_model.state_dict())
            teacher_unet.to(accelerator.device)
            del load_model

            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_unet.load_state_dict(load_model.state_dict())
                ema_unet.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    # 6. Enable optimizations
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warning(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
            teacher_unet.enable_xformers_memory_efficient_attention()
            if args.use_ema:
                ema_unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if args.optimizer_type == "radam":
        optimizer_class = torch.optim.RAdam
    elif args.optimizer_type == "adamw":
        # Use 8-bit Adam for lower memory usage or to fine-tune the model for 16GB GPUs
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW
    else:
        raise ValueError(
            f"Optimizer type {args.optimizer_type} is not supported. Currently supported optimizer types are `radam`"
            f" and `adamw`."
        )

    # 7. Initialize the optimizer
    optimizer = optimizer_class(
        unet.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # 8. Dataset creation and data preprocessing
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
    interpolation_mode = resolve_interpolation_mode(args.interpolation_type)
    augmentations = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=interpolation_mode),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    def transform_images(examples):
        images = [augmentations(image.convert("RGB")) for image in examples[args.dataset_image_column_name]]
        batch_dict = {"images": images}
        if args.class_conditional:
            batch_dict["class_labels"] = examples[args.dataset_class_label_column_name]
        return batch_dict

    logger.info(f"Dataset size: {len(dataset)}")

    dataset.set_transform(transform_images)
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )

    # 9. Initialize the learning rate scheduler
    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # 10. Prepare for training
    # Prepare everything with our `accelerator`.
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )

    def recalculate_num_discretization_step_values(discretization_steps, skip_steps):
        """
        Recalculates all quantities depending on the number of discretization steps N.
        """
        noise_scheduler = CMStochasticIterativeScheduler(
            num_train_timesteps=discretization_steps,
            sigma_min=args.sigma_min,
            sigma_max=args.sigma_max,
            rho=args.rho,
        )
        current_timesteps = get_karras_sigmas(discretization_steps, args.sigma_min, args.sigma_max, args.rho)
        valid_teacher_timesteps_plus_one = current_timesteps[: len(current_timesteps) - skip_steps + 1]
        # timestep_weights are the unnormalized probabilities of sampling the timestep/noise level at each index
        timestep_weights = get_discretized_lognormal_weights(
            valid_teacher_timesteps_plus_one, p_mean=args.p_mean, p_std=args.p_std
        )
        # timestep_loss_weights is the timestep-dependent loss weighting schedule lambda(sigma_i)
        timestep_loss_weights = get_loss_weighting_schedule(valid_teacher_timesteps_plus_one)

        current_timesteps = current_timesteps.to(accelerator.device)
        timestep_weights = timestep_weights.to(accelerator.device)
        timestep_loss_weights = timestep_loss_weights.to(accelerator.device)

        return noise_scheduler, current_timesteps, timestep_weights, timestep_loss_weights

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))
        accelerator.init_trackers(args.tracker_project_name, config=tracker_config)

    # Function for unwraping if torch.compile() was used in accelerate.
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    # Resolve the c parameter for the Pseudo-Huber loss
    if args.huber_c is None:
        args.huber_c = 0.00054 * args.resolution * math.sqrt(unet.config.in_channels)

    # Get current number of discretization steps N according to our discretization curriculum
    current_discretization_steps = get_discretization_steps(
        initial_global_step,
        args.max_train_steps,
        s_0=args.discretization_s_0,
        s_1=args.discretization_s_1,
        constant=args.constant_discretization_steps,
    )
    current_skip_steps = get_skip_steps(initial_global_step, initial_skip=args.skip_steps)
    if current_skip_steps >= current_discretization_steps:
        raise ValueError(
            f"The current skip steps is {current_skip_steps}, but should be smaller than the current number of"
            f" discretization steps {current_discretization_steps}"
        )
    # Recalculate all quantities depending on the number of discretization steps N
    (
        noise_scheduler,
        current_timesteps,
        timestep_weights,
        timestep_loss_weights,
    ) = recalculate_num_discretization_step_values(current_discretization_steps, current_skip_steps)

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    # 11. Train!
    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
        for step, batch in enumerate(train_dataloader):
            # 1. Get batch of images from dataloader (sample x ~ p_data(x))
            clean_images = batch["images"].to(weight_dtype)
            if args.class_conditional:
                class_labels = batch["class_labels"]
            else:
                class_labels = None
            bsz = clean_images.shape[0]

            # 2. Sample a random timestep for each image according to the noise schedule.
            # Sample random indices i ~ p(i), where p(i) is the dicretized lognormal distribution in the iCT paper
            # NOTE: timestep_indices should be in the range [0, len(current_timesteps) - k - 1] inclusive
            timestep_indices = torch.multinomial(timestep_weights, bsz, replacement=True).long()
            teacher_timesteps = current_timesteps[timestep_indices]
            student_timesteps = current_timesteps[timestep_indices + current_skip_steps]

            # 3. Sample noise and add it to the clean images for both teacher and student unets
            # Sample noise z ~ N(0, I) that we'll add to the images
            noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device)
            # Add noise to the clean images according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            teacher_noisy_images = add_noise(clean_images, noise, teacher_timesteps)
            student_noisy_images = add_noise(clean_images, noise, student_timesteps)

            # 4. Calculate preconditioning and scalings for boundary conditions for the consistency model.
            teacher_rescaled_timesteps = get_noise_preconditioning(teacher_timesteps, args.noise_precond_type)
            student_rescaled_timesteps = get_noise_preconditioning(student_timesteps, args.noise_precond_type)

            c_in_teacher = get_input_preconditioning(teacher_timesteps, input_precond_type=args.input_precond_type)
            c_in_student = get_input_preconditioning(student_timesteps, input_precond_type=args.input_precond_type)

            c_skip_teacher, c_out_teacher = scalings_for_boundary_conditions(teacher_timesteps)
            c_skip_student, c_out_student = scalings_for_boundary_conditions(student_timesteps)

            c_skip_teacher, c_out_teacher, c_in_teacher = [
                append_dims(x, clean_images.ndim) for x in [c_skip_teacher, c_out_teacher, c_in_teacher]
            ]
            c_skip_student, c_out_student, c_in_student = [
                append_dims(x, clean_images.ndim) for x in [c_skip_student, c_out_student, c_in_student]
            ]

            with accelerator.accumulate(unet):
                # 5. Get the student unet denoising prediction on the student timesteps
                # Get rng state now to ensure that dropout is synced between the student and teacher models.
                dropout_state = torch.get_rng_state()
                student_model_output = unet(
                    c_in_student * student_noisy_images, student_rescaled_timesteps, class_labels=class_labels
                ).sample
                # NOTE: currently only support prediction_type == sample, so no need to convert model_output
                student_denoise_output = c_skip_student * student_noisy_images + c_out_student * student_model_output

                # 6. Get the teacher unet denoising prediction on the teacher timesteps
                with torch.no_grad(), torch.autocast("cuda", dtype=teacher_dtype):
                    torch.set_rng_state(dropout_state)
                    teacher_model_output = teacher_unet(
                        c_in_teacher * teacher_noisy_images, teacher_rescaled_timesteps, class_labels=class_labels
                    ).sample
                    # NOTE: currently only support prediction_type == sample, so no need to convert model_output
                    teacher_denoise_output = (
                        c_skip_teacher * teacher_noisy_images + c_out_teacher * teacher_model_output
                    )

                # 7. Calculate the weighted Pseudo-Huber loss
                if args.prediction_type == "sample":
                    # Note that the loss weights should be those at the (teacher) timestep indices.
                    lambda_t = _extract_into_tensor(
                        timestep_loss_weights, timestep_indices, (bsz,) + (1,) * (clean_images.ndim - 1)
                    )
                    loss = lambda_t * (
                        torch.sqrt(
                            (student_denoise_output.float() - teacher_denoise_output.float()) ** 2 + args.huber_c**2
                        )
                        - args.huber_c
                    )
                    loss = loss.mean()
                else:
                    raise ValueError(
                        f"Unsupported prediction type: {args.prediction_type}. Currently, only `sample` is supported."
                    )

                # 8. Backpropagate on the consistency training loss
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                # 9. Update teacher_unet and ema_unet parameters using unet's parameters.
                teacher_unet.load_state_dict(unet.state_dict())
                if args.use_ema:
                    ema_unet.step(unet.parameters())
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    # 10. Recalculate quantities depending on the global step, if necessary.
                    new_discretization_steps = get_discretization_steps(
                        global_step,
                        args.max_train_steps,
                        s_0=args.discretization_s_0,
                        s_1=args.discretization_s_1,
                        constant=args.constant_discretization_steps,
                    )
                    current_skip_steps = get_skip_steps(global_step, initial_skip=args.skip_steps)
                    if current_skip_steps >= new_discretization_steps:
                        raise ValueError(
                            f"The current skip steps is {current_skip_steps}, but should be smaller than the current"
                            f" number of discretization steps {new_discretization_steps}."
                        )
                    if new_discretization_steps != current_discretization_steps:
                        (
                            noise_scheduler,
                            current_timesteps,
                            timestep_weights,
                            timestep_loss_weights,
                        ) = recalculate_num_discretization_step_values(new_discretization_steps, current_skip_steps)
                        current_discretization_steps = new_discretization_steps

                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                    if global_step % args.validation_steps == 0:
                        # NOTE: since we do not use EMA for the teacher model, the teacher parameters and student
                        # parameters are the same at this point in time
                        log_validation(unet, noise_scheduler, args, accelerator, weight_dtype, global_step, "teacher")
                        # teacher_unet.to(dtype=teacher_dtype)

                        if args.use_ema:
                            # Store the student unet weights and load the EMA weights.
                            ema_unet.store(unet.parameters())
                            ema_unet.copy_to(unet.parameters())

                            log_validation(
                                unet,
                                noise_scheduler,
                                args,
                                accelerator,
                                weight_dtype,
                                global_step,
                                "ema_student",
                            )

                            # Restore student unet weights
                            ema_unet.restore(unet.parameters())

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_unet.cur_decay_value
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break
        # progress_bar.close()

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = unwrap_model(unet)
        pipeline = ConsistencyModelPipeline(unet=unet, scheduler=noise_scheduler)
        pipeline.save_pretrained(args.output_dir)

        # If using EMA, save EMA weights as well.
        if args.use_ema:
            ema_unet.copy_to(unet.parameters())

            unet.save_pretrained(os.path.join(args.output_dir, "ema_unet"))

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)