File size: 7,687 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/root/miniconda/envs/densecaption/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import torch\n",
"from diffusers import StableDiffusionGLIGENTextImagePipeline, StableDiffusionGLIGENPipeline"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import diffusers\n",
"from diffusers import (\n",
" AutoencoderKL,\n",
" DDPMScheduler,\n",
" UNet2DConditionModel,\n",
" UniPCMultistepScheduler,\n",
" EulerDiscreteScheduler,\n",
")\n",
"from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer\n",
"# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n",
"\n",
"pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n",
"\n",
"tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=\"tokenizer\")\n",
"noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder=\"scheduler\")\n",
"text_encoder = CLIPTextModel.from_pretrained(\n",
" pretrained_model_name_or_path, subfolder=\"text_encoder\"\n",
")\n",
"vae = AutoencoderKL.from_pretrained(\n",
" pretrained_model_name_or_path, subfolder=\"vae\"\n",
")\n",
"# unet = UNet2DConditionModel.from_pretrained(\n",
"# pretrained_model_name_or_path, subfolder=\"unet\"\n",
"# )\n",
"\n",
"noise_scheduler = EulerDiscreteScheduler.from_config(noise_scheduler.config)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"unet = UNet2DConditionModel.from_pretrained(\n",
" '/root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion_gligen.pipeline_stable_diffusion_gligen.StableDiffusionGLIGENPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .\n"
]
}
],
"source": [
"pipe = StableDiffusionGLIGENPipeline(\n",
" vae,\n",
" text_encoder,\n",
" tokenizer,\n",
" unet,\n",
" noise_scheduler,\n",
" safety_checker=None,\n",
" feature_extractor=None,\n",
")\n",
"pipe = pipe.to(\"cuda\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky'\n",
"# gen_boxes = [('a green car', [21, 281, 211, 159]), ('a blue truck', [269, 283, 209, 160]), ('a red air balloon', [66, 8, 145, 135]), ('a bird', [296, 42, 143, 100])]\n",
"\n",
"# prompt = 'A realistic top-down view of a wooden table with two apples on it'\n",
"# gen_boxes = [('a wooden table', [20, 148, 472, 216]), ('an apple', [150, 226, 100, 100]), ('an apple', [280, 226, 100, 100])]\n",
"\n",
"# prompt = 'A realistic scene of three skiers standing in a line on the snow near a palm tree'\n",
"# gen_boxes = [('a skier', [5, 152, 139, 168]), ('a skier', [278, 192, 121, 158]), ('a skier', [148, 173, 124, 155]), ('a palm tree', [404, 105, 103, 251])]\n",
"\n",
"prompt = 'An oil painting of a pink dolphin jumping on the left of a steam boat on the sea'\n",
"gen_boxes = [('a steam boat', [232, 225, 257, 149]), ('a jumping pink dolphin', [21, 249, 189, 123])]\n",
"\n",
"import numpy as np\n",
"\n",
"boxes = np.array([x[1] for x in gen_boxes])\n",
"boxes = boxes / 512\n",
"boxes[:, 2] = boxes[:, 0] + boxes[:, 2]\n",
"boxes[:, 3] = boxes[:, 1] + boxes[:, 3]\n",
"boxes = boxes.tolist()\n",
"gligen_phrases = [x[0] for x in gen_boxes]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/root/miniconda/envs/densecaption/lib/python3.11/site-packages/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py:683: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet2DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet2DConditionModel's config object instead, e.g. 'unet.config.in_channels'.\n",
" num_channels_latents = self.unet.in_channels\n",
"/root/miniconda/envs/densecaption/lib/python3.11/site-packages/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py:716: FutureWarning: Accessing config attribute `cross_attention_dim` directly via 'UNet2DConditionModel' object attribute is deprecated. Please access 'cross_attention_dim' over 'UNet2DConditionModel's config object instead, e.g. 'unet.config.cross_attention_dim'.\n",
" max_objs, self.unet.cross_attention_dim, device=device, dtype=self.text_encoder.dtype\n",
"100%|ββββββββββ| 50/50 [01:21<00:00, 1.64s/it]\n"
]
}
],
"source": [
"images = pipe(\n",
" prompt=prompt,\n",
" gligen_phrases=gligen_phrases,\n",
" gligen_boxes=boxes,\n",
" gligen_scheduled_sampling_beta=1.0,\n",
" output_type=\"pil\",\n",
" num_inference_steps=50,\n",
" negative_prompt=\"artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate\",\n",
" num_images_per_prompt=16,\n",
").images"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"diffusers.utils.make_image_grid(images, 4, len(images)//4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "densecaption",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|