File size: 9,015 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
from typing import List
import faiss
import numpy as np
import torch
from datasets import Dataset, load_dataset
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPModel, PretrainedConfig
from diffusers import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def normalize_images(images: List[Image.Image]):
images = [np.array(image) for image in images]
images = [image / 127.5 - 1 for image in images]
return images
def preprocess_images(images: List[np.array], feature_extractor: CLIPFeatureExtractor) -> torch.Tensor:
"""
Preprocesses a list of images into a batch of tensors.
Args:
images (:obj:`List[Image.Image]`):
A list of images to preprocess.
Returns:
:obj:`torch.Tensor`: A batch of tensors.
"""
images = [np.array(image) for image in images]
images = [(image + 1.0) / 2.0 for image in images]
images = feature_extractor(images, return_tensors="pt").pixel_values
return images
class IndexConfig(PretrainedConfig):
def __init__(
self,
clip_name_or_path="openai/clip-vit-large-patch14",
dataset_name="Isamu136/oxford_pets_with_l14_emb",
image_column="image",
index_name="embeddings",
index_path=None,
dataset_set="train",
metric_type=faiss.METRIC_L2,
faiss_device=-1,
**kwargs,
):
super().__init__(**kwargs)
self.clip_name_or_path = clip_name_or_path
self.dataset_name = dataset_name
self.image_column = image_column
self.index_name = index_name
self.index_path = index_path
self.dataset_set = dataset_set
self.metric_type = metric_type
self.faiss_device = faiss_device
class Index:
"""
Each index for a retrieval model is specific to the clip model used and the dataset used.
"""
def __init__(self, config: IndexConfig, dataset: Dataset):
self.config = config
self.dataset = dataset
self.index_initialized = False
self.index_name = config.index_name
self.index_path = config.index_path
self.init_index()
def set_index_name(self, index_name: str):
self.index_name = index_name
def init_index(self):
if not self.index_initialized:
if self.index_path and self.index_name:
try:
self.dataset.add_faiss_index(
column=self.index_name, metric_type=self.config.metric_type, device=self.config.faiss_device
)
self.index_initialized = True
except Exception as e:
print(e)
logger.info("Index not initialized")
if self.index_name in self.dataset.features:
self.dataset.add_faiss_index(column=self.index_name)
self.index_initialized = True
def build_index(
self,
model=None,
feature_extractor: CLIPFeatureExtractor = None,
torch_dtype=torch.float32,
):
if not self.index_initialized:
model = model or CLIPModel.from_pretrained(self.config.clip_name_or_path).to(dtype=torch_dtype)
feature_extractor = feature_extractor or CLIPFeatureExtractor.from_pretrained(
self.config.clip_name_or_path
)
self.dataset = get_dataset_with_emb_from_clip_model(
self.dataset,
model,
feature_extractor,
image_column=self.config.image_column,
index_name=self.config.index_name,
)
self.init_index()
def retrieve_imgs(self, vec, k: int = 20):
vec = np.array(vec).astype(np.float32)
return self.dataset.get_nearest_examples(self.index_name, vec, k=k)
def retrieve_imgs_batch(self, vec, k: int = 20):
vec = np.array(vec).astype(np.float32)
return self.dataset.get_nearest_examples_batch(self.index_name, vec, k=k)
def retrieve_indices(self, vec, k: int = 20):
vec = np.array(vec).astype(np.float32)
return self.dataset.search(self.index_name, vec, k=k)
def retrieve_indices_batch(self, vec, k: int = 20):
vec = np.array(vec).astype(np.float32)
return self.dataset.search_batch(self.index_name, vec, k=k)
class Retriever:
def __init__(
self,
config: IndexConfig,
index: Index = None,
dataset: Dataset = None,
model=None,
feature_extractor: CLIPFeatureExtractor = None,
):
self.config = config
self.index = index or self._build_index(config, dataset, model=model, feature_extractor=feature_extractor)
@classmethod
def from_pretrained(
cls,
retriever_name_or_path: str,
index: Index = None,
dataset: Dataset = None,
model=None,
feature_extractor: CLIPFeatureExtractor = None,
**kwargs,
):
config = kwargs.pop("config", None) or IndexConfig.from_pretrained(retriever_name_or_path, **kwargs)
return cls(config, index=index, dataset=dataset, model=model, feature_extractor=feature_extractor)
@staticmethod
def _build_index(
config: IndexConfig, dataset: Dataset = None, model=None, feature_extractor: CLIPFeatureExtractor = None
):
dataset = dataset or load_dataset(config.dataset_name)
dataset = dataset[config.dataset_set]
index = Index(config, dataset)
index.build_index(model=model, feature_extractor=feature_extractor)
return index
def save_pretrained(self, save_directory):
os.makedirs(save_directory, exist_ok=True)
if self.config.index_path is None:
index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
self.index.dataset.get_index(self.config.index_name).save(index_path)
self.config.index_path = index_path
self.config.save_pretrained(save_directory)
def init_retrieval(self):
logger.info("initializing retrieval")
self.index.init_index()
def retrieve_imgs(self, embeddings: np.ndarray, k: int):
return self.index.retrieve_imgs(embeddings, k)
def retrieve_imgs_batch(self, embeddings: np.ndarray, k: int):
return self.index.retrieve_imgs_batch(embeddings, k)
def retrieve_indices(self, embeddings: np.ndarray, k: int):
return self.index.retrieve_indices(embeddings, k)
def retrieve_indices_batch(self, embeddings: np.ndarray, k: int):
return self.index.retrieve_indices_batch(embeddings, k)
def __call__(
self,
embeddings,
k: int = 20,
):
return self.index.retrieve_imgs(embeddings, k)
def map_txt_to_clip_feature(clip_model, tokenizer, prompt):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > tokenizer.model_max_length:
removed_text = tokenizer.batch_decode(text_input_ids[:, tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : tokenizer.model_max_length]
text_embeddings = clip_model.get_text_features(text_input_ids.to(clip_model.device))
text_embeddings = text_embeddings / torch.linalg.norm(text_embeddings, dim=-1, keepdim=True)
text_embeddings = text_embeddings[:, None, :]
return text_embeddings[0][0].cpu().detach().numpy()
def map_img_to_model_feature(model, feature_extractor, imgs, device):
for i, image in enumerate(imgs):
if not image.mode == "RGB":
imgs[i] = image.convert("RGB")
imgs = normalize_images(imgs)
retrieved_images = preprocess_images(imgs, feature_extractor).to(device)
image_embeddings = model(retrieved_images)
image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True)
image_embeddings = image_embeddings[None, ...]
return image_embeddings.cpu().detach().numpy()[0][0]
def get_dataset_with_emb_from_model(dataset, model, feature_extractor, image_column="image", index_name="embeddings"):
return dataset.map(
lambda example: {
index_name: map_img_to_model_feature(model, feature_extractor, [example[image_column]], model.device)
}
)
def get_dataset_with_emb_from_clip_model(
dataset, clip_model, feature_extractor, image_column="image", index_name="embeddings"
):
return dataset.map(
lambda example: {
index_name: map_img_to_model_feature(
clip_model.get_image_features, feature_extractor, [example[image_column]], clip_model.device
)
}
)
|