File size: 5,768 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import tempfile


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class TextualInversionSdxl(ExamplesTestsAccelerate):
    def test_textual_inversion_sdxl(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/textual_inversion/textual_inversion_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
                --train_data_dir docs/source/en/imgs
                --learnable_property object
                --placeholder_token <cat-toy>
                --initializer_token a
                --save_steps 1
                --num_vectors 2
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.safetensors")))

    def test_textual_inversion_sdxl_checkpointing(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/textual_inversion/textual_inversion_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
                --train_data_dir docs/source/en/imgs
                --learnable_property object
                --placeholder_token <cat-toy>
                --initializer_token a
                --save_steps 1
                --num_vectors 2
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 3
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=1
                --checkpoints_total_limit=2
                """.split()

            run_command(self._launch_args + test_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-3"},
            )

    def test_textual_inversion_sdxl_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/textual_inversion/textual_inversion_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
                --train_data_dir docs/source/en/imgs
                --learnable_property object
                --placeholder_token <cat-toy>
                --initializer_token a
                --save_steps 1
                --num_vectors 2
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=1
                """.split()

            run_command(self._launch_args + test_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-1", "checkpoint-2"},
            )

            resume_run_args = f"""
                examples/textual_inversion/textual_inversion_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe
                --train_data_dir docs/source/en/imgs
                --learnable_property object
                --placeholder_token <cat-toy>
                --initializer_token a
                --save_steps 1
                --num_vectors 2
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=1
                --resume_from_checkpoint=checkpoint-2
                --checkpoints_total_limit=2
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-3"},
            )