File size: 2,923 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# Copyright 2022 The Music Spectrogram Diffusion Authors.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm
from ....configuration_utils import ConfigMixin, register_to_config
from ....models import ModelMixin
class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
@register_to_config
def __init__(
self,
max_length: int,
vocab_size: int,
d_model: int,
dropout_rate: float,
num_layers: int,
num_heads: int,
d_kv: int,
d_ff: int,
feed_forward_proj: str,
is_decoder: bool = False,
):
super().__init__()
self.token_embedder = nn.Embedding(vocab_size, d_model)
self.position_encoding = nn.Embedding(max_length, d_model)
self.position_encoding.weight.requires_grad = False
self.dropout_pre = nn.Dropout(p=dropout_rate)
t5config = T5Config(
vocab_size=vocab_size,
d_model=d_model,
num_heads=num_heads,
d_kv=d_kv,
d_ff=d_ff,
dropout_rate=dropout_rate,
feed_forward_proj=feed_forward_proj,
is_decoder=is_decoder,
is_encoder_decoder=False,
)
self.encoders = nn.ModuleList()
for lyr_num in range(num_layers):
lyr = T5Block(t5config)
self.encoders.append(lyr)
self.layer_norm = T5LayerNorm(d_model)
self.dropout_post = nn.Dropout(p=dropout_rate)
def forward(self, encoder_input_tokens, encoder_inputs_mask):
x = self.token_embedder(encoder_input_tokens)
seq_length = encoder_input_tokens.shape[1]
inputs_positions = torch.arange(seq_length, device=encoder_input_tokens.device)
x += self.position_encoding(inputs_positions)
x = self.dropout_pre(x)
# inverted the attention mask
input_shape = encoder_input_tokens.size()
extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape)
for lyr in self.encoders:
x = lyr(x, extended_attention_mask)[0]
x = self.layer_norm(x)
return self.dropout_post(x), encoder_inputs_mask
|