File size: 36,818 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
import functools
import importlib
import inspect
import io
import logging
import multiprocessing
import os
import random
import re
import struct
import sys
import tempfile
import time
import unittest
import urllib.parse
from contextlib import contextmanager
from io import BytesIO, StringIO
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import PIL.ImageOps
import requests
from numpy.linalg import norm
from packaging import version
from .import_utils import (
BACKENDS_MAPPING,
is_compel_available,
is_flax_available,
is_note_seq_available,
is_onnx_available,
is_opencv_available,
is_peft_available,
is_timm_available,
is_torch_available,
is_torch_version,
is_torchsde_available,
is_transformers_available,
)
from .logging import get_logger
global_rng = random.Random()
logger = get_logger(__name__)
_required_peft_version = is_peft_available() and version.parse(
version.parse(importlib.metadata.version("peft")).base_version
) > version.parse("0.5")
_required_transformers_version = is_transformers_available() and version.parse(
version.parse(importlib.metadata.version("transformers")).base_version
) > version.parse("4.33")
USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version
if is_torch_available():
import torch
# Set a backend environment variable for any extra module import required for a custom accelerator
if "DIFFUSERS_TEST_BACKEND" in os.environ:
backend = os.environ["DIFFUSERS_TEST_BACKEND"]
try:
_ = importlib.import_module(backend)
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
f"Failed to import `DIFFUSERS_TEST_BACKEND` '{backend}'! This should be the name of an installed module \
to enable a specified backend.):\n{e}"
) from e
if "DIFFUSERS_TEST_DEVICE" in os.environ:
torch_device = os.environ["DIFFUSERS_TEST_DEVICE"]
try:
# try creating device to see if provided device is valid
_ = torch.device(torch_device)
except RuntimeError as e:
raise RuntimeError(
f"Unknown testing device specified by environment variable `DIFFUSERS_TEST_DEVICE`: {torch_device}"
) from e
logger.info(f"torch_device overrode to {torch_device}")
else:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
is_torch_higher_equal_than_1_12 = version.parse(
version.parse(torch.__version__).base_version
) >= version.parse("1.12")
if is_torch_higher_equal_than_1_12:
# Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details
mps_backend_registered = hasattr(torch.backends, "mps")
torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device
def torch_all_close(a, b, *args, **kwargs):
if not is_torch_available():
raise ValueError("PyTorch needs to be installed to use this function.")
if not torch.allclose(a, b, *args, **kwargs):
assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
return True
def numpy_cosine_similarity_distance(a, b):
similarity = np.dot(a, b) / (norm(a) * norm(b))
distance = 1.0 - similarity.mean()
return distance
def print_tensor_test(
tensor,
limit_to_slices=None,
max_torch_print=None,
filename="test_corrections.txt",
expected_tensor_name="expected_slice",
):
if max_torch_print:
torch.set_printoptions(threshold=10_000)
test_name = os.environ.get("PYTEST_CURRENT_TEST")
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
if limit_to_slices:
tensor = tensor[0, -3:, -3:, -1]
tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
# format is usually:
# expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
test_file, test_class, test_fn = test_name.split("::")
test_fn = test_fn.split()[0]
with open(filename, "a") as f:
print("::".join([test_file, test_class, test_fn, output_str]), file=f)
def get_tests_dir(append_path=None):
"""
Args:
append_path: optional path to append to the tests dir path
Return:
The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
joined after the `tests` dir the former is provided.
"""
# this function caller's __file__
caller__file__ = inspect.stack()[1][1]
tests_dir = os.path.abspath(os.path.dirname(caller__file__))
while not tests_dir.endswith("tests"):
tests_dir = os.path.dirname(tests_dir)
if append_path:
return Path(tests_dir, append_path).as_posix()
else:
return tests_dir
# Taken from the following PR:
# https://github.com/huggingface/accelerate/pull/1964
def str_to_bool(value) -> int:
"""
Converts a string representation of truth to `True` (1) or `False` (0). True values are `y`, `yes`, `t`, `true`,
`on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
"""
value = value.lower()
if value in ("y", "yes", "t", "true", "on", "1"):
return 1
elif value in ("n", "no", "f", "false", "off", "0"):
return 0
else:
raise ValueError(f"invalid truth value {value}")
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = str_to_bool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
def slow(test_case):
"""
Decorator marking a test as slow.
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
def nightly(test_case):
"""
Decorator marking a test that runs nightly in the diffusers CI.
Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.
"""
return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed.
"""
return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
def require_torch_2(test_case):
"""
Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed.
"""
return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")(
test_case
)
def require_torch_gpu(test_case):
"""Decorator marking a test that requires CUDA and PyTorch."""
return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")(
test_case
)
# These decorators are for accelerator-specific behaviours that are not GPU-specific
def require_torch_accelerator(test_case):
"""Decorator marking a test that requires an accelerator backend and PyTorch."""
return unittest.skipUnless(is_torch_available() and torch_device != "cpu", "test requires accelerator+PyTorch")(
test_case
)
def require_torch_multi_gpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
multiple GPUs. To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests
-k "multi_gpu"
"""
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
def require_torch_accelerator_with_fp16(test_case):
"""Decorator marking a test that requires an accelerator with support for the FP16 data type."""
return unittest.skipUnless(_is_torch_fp16_available(torch_device), "test requires accelerator with fp16 support")(
test_case
)
def require_torch_accelerator_with_fp64(test_case):
"""Decorator marking a test that requires an accelerator with support for the FP64 data type."""
return unittest.skipUnless(_is_torch_fp64_available(torch_device), "test requires accelerator with fp64 support")(
test_case
)
def require_torch_accelerator_with_training(test_case):
"""Decorator marking a test that requires an accelerator with support for training."""
return unittest.skipUnless(
is_torch_available() and backend_supports_training(torch_device),
"test requires accelerator with training support",
)(test_case)
def skip_mps(test_case):
"""Decorator marking a test to skip if torch_device is 'mps'"""
return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case)
def require_flax(test_case):
"""
Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
"""
return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)
def require_compel(test_case):
"""
Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when
the library is not installed.
"""
return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case)
def require_onnxruntime(test_case):
"""
Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed.
"""
return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)
def require_note_seq(test_case):
"""
Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed.
"""
return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case)
def require_torchsde(test_case):
"""
Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed.
"""
return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case)
def require_peft_backend(test_case):
"""
Decorator marking a test that requires PEFT backend, this would require some specific versions of PEFT and
transformers.
"""
return unittest.skipUnless(USE_PEFT_BACKEND, "test requires PEFT backend")(test_case)
def require_timm(test_case):
"""
Decorator marking a test that requires timm. These tests are skipped when timm isn't installed.
"""
return unittest.skipUnless(is_timm_available(), "test requires timm")(test_case)
def require_peft_version_greater(peft_version):
"""
Decorator marking a test that requires PEFT backend with a specific version, this would require some specific
versions of PEFT and transformers.
"""
def decorator(test_case):
correct_peft_version = is_peft_available() and version.parse(
version.parse(importlib.metadata.version("peft")).base_version
) > version.parse(peft_version)
return unittest.skipUnless(
correct_peft_version, f"test requires PEFT backend with the version greater than {peft_version}"
)(test_case)
return decorator
def require_accelerate_version_greater(accelerate_version):
def decorator(test_case):
correct_accelerate_version = is_peft_available() and version.parse(
version.parse(importlib.metadata.version("accelerate")).base_version
) > version.parse(accelerate_version)
return unittest.skipUnless(
correct_accelerate_version, f"Test requires accelerate with the version greater than {accelerate_version}."
)(test_case)
return decorator
def deprecate_after_peft_backend(test_case):
"""
Decorator marking a test that will be skipped after PEFT backend
"""
return unittest.skipUnless(not USE_PEFT_BACKEND, "test skipped in favor of PEFT backend")(test_case)
def get_python_version():
sys_info = sys.version_info
major, minor = sys_info.major, sys_info.minor
return major, minor
def require_python39_or_higher(test_case):
def python39_available():
major, minor = get_python_version()
return major == 3 and minor >= 9
return unittest.skipUnless(python39_available(), "test requires Python 3.9 or higher")(test_case)
def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
if isinstance(arry, str):
if local_path is not None:
# local_path can be passed to correct images of tests
return Path(local_path, arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]).as_posix()
elif arry.startswith("http://") or arry.startswith("https://"):
response = requests.get(arry)
response.raise_for_status()
arry = np.load(BytesIO(response.content))
elif os.path.isfile(arry):
arry = np.load(arry)
else:
raise ValueError(
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
)
elif isinstance(arry, np.ndarray):
pass
else:
raise ValueError(
"Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
" ndarray."
)
return arry
def load_pt(url: str):
response = requests.get(url)
response.raise_for_status()
arry = torch.load(BytesIO(response.content))
return arry
def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
"""
Loads `image` to a PIL Image.
Args:
image (`str` or `PIL.Image.Image`):
The image to convert to the PIL Image format.
Returns:
`PIL.Image.Image`:
A PIL Image.
"""
if isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
image = PIL.Image.open(requests.get(image, stream=True).raw)
elif os.path.isfile(image):
image = PIL.Image.open(image)
else:
raise ValueError(
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
)
elif isinstance(image, PIL.Image.Image):
image = image
else:
raise ValueError(
"Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
def preprocess_image(image: PIL.Image, batch_size: int):
w, h = image.size
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str:
if output_gif_path is None:
output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name
image[0].save(
output_gif_path,
save_all=True,
append_images=image[1:],
optimize=False,
duration=100,
loop=0,
)
return output_gif_path
@contextmanager
def buffered_writer(raw_f):
f = io.BufferedWriter(raw_f)
yield f
f.flush()
def export_to_ply(mesh, output_ply_path: str = None):
"""
Write a PLY file for a mesh.
"""
if output_ply_path is None:
output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name
coords = mesh.verts.detach().cpu().numpy()
faces = mesh.faces.cpu().numpy()
rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
with buffered_writer(open(output_ply_path, "wb")) as f:
f.write(b"ply\n")
f.write(b"format binary_little_endian 1.0\n")
f.write(bytes(f"element vertex {len(coords)}\n", "ascii"))
f.write(b"property float x\n")
f.write(b"property float y\n")
f.write(b"property float z\n")
if rgb is not None:
f.write(b"property uchar red\n")
f.write(b"property uchar green\n")
f.write(b"property uchar blue\n")
if faces is not None:
f.write(bytes(f"element face {len(faces)}\n", "ascii"))
f.write(b"property list uchar int vertex_index\n")
f.write(b"end_header\n")
if rgb is not None:
rgb = (rgb * 255.499).round().astype(int)
vertices = [
(*coord, *rgb)
for coord, rgb in zip(
coords.tolist(),
rgb.tolist(),
)
]
format = struct.Struct("<3f3B")
for item in vertices:
f.write(format.pack(*item))
else:
format = struct.Struct("<3f")
for vertex in coords.tolist():
f.write(format.pack(*vertex))
if faces is not None:
format = struct.Struct("<B3I")
for tri in faces.tolist():
f.write(format.pack(len(tri), *tri))
return output_ply_path
def export_to_obj(mesh, output_obj_path: str = None):
if output_obj_path is None:
output_obj_path = tempfile.NamedTemporaryFile(suffix=".obj").name
verts = mesh.verts.detach().cpu().numpy()
faces = mesh.faces.cpu().numpy()
vertex_colors = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
vertices = [
"{} {} {} {} {} {}".format(*coord, *color) for coord, color in zip(verts.tolist(), vertex_colors.tolist())
]
faces = ["f {} {} {}".format(str(tri[0] + 1), str(tri[1] + 1), str(tri[2] + 1)) for tri in faces.tolist()]
combined_data = ["v " + vertex for vertex in vertices] + faces
with open(output_obj_path, "w") as f:
f.writelines("\n".join(combined_data))
def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str:
if is_opencv_available():
import cv2
else:
raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
h, w, c = video_frames[0].shape
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
return output_video_path
def load_hf_numpy(path) -> np.ndarray:
base_url = "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main"
if not path.startswith("http://") and not path.startswith("https://"):
path = os.path.join(base_url, urllib.parse.quote(path))
return load_numpy(path)
# --- pytest conf functions --- #
# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}
def pytest_addoption_shared(parser):
"""
This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.
It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
option.
"""
option = "--make-reports"
if option not in pytest_opt_registered:
parser.addoption(
option,
action="store",
default=False,
help="generate report files. The value of this option is used as a prefix to report names",
)
pytest_opt_registered[option] = 1
def pytest_terminal_summary_main(tr, id):
"""
Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
directory. The report files are prefixed with the test suite name.
This function emulates --duration and -rA pytest arguments.
This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
there.
Args:
- tr: `terminalreporter` passed from `conftest.py`
- id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
NB: this functions taps into a private _pytest API and while unlikely, it could break should
pytest do internal changes - also it calls default internal methods of terminalreporter which
can be hijacked by various `pytest-` plugins and interfere.
"""
from _pytest.config import create_terminal_writer
if not len(id):
id = "tests"
config = tr.config
orig_writer = config.get_terminal_writer()
orig_tbstyle = config.option.tbstyle
orig_reportchars = tr.reportchars
dir = "reports"
Path(dir).mkdir(parents=True, exist_ok=True)
report_files = {
k: f"{dir}/{id}_{k}.txt"
for k in [
"durations",
"errors",
"failures_long",
"failures_short",
"failures_line",
"passes",
"stats",
"summary_short",
"warnings",
]
}
# custom durations report
# note: there is no need to call pytest --durations=XX to get this separate report
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
dlist = []
for replist in tr.stats.values():
for rep in replist:
if hasattr(rep, "duration"):
dlist.append(rep)
if dlist:
dlist.sort(key=lambda x: x.duration, reverse=True)
with open(report_files["durations"], "w") as f:
durations_min = 0.05 # sec
f.write("slowest durations\n")
for i, rep in enumerate(dlist):
if rep.duration < durations_min:
f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted")
break
f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")
def summary_failures_short(tr):
# expecting that the reports were --tb=long (default) so we chop them off here to the last frame
reports = tr.getreports("failed")
if not reports:
return
tr.write_sep("=", "FAILURES SHORT STACK")
for rep in reports:
msg = tr._getfailureheadline(rep)
tr.write_sep("_", msg, red=True, bold=True)
# chop off the optional leading extra frames, leaving only the last one
longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
tr._tw.line(longrepr)
# note: not printing out any rep.sections to keep the report short
# use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
# note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
# pytest-instafail does that)
# report failures with line/short/long styles
config.option.tbstyle = "auto" # full tb
with open(report_files["failures_long"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_failures()
# config.option.tbstyle = "short" # short tb
with open(report_files["failures_short"], "w") as f:
tr._tw = create_terminal_writer(config, f)
summary_failures_short(tr)
config.option.tbstyle = "line" # one line per error
with open(report_files["failures_line"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_failures()
with open(report_files["errors"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_errors()
with open(report_files["warnings"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_warnings() # normal warnings
tr.summary_warnings() # final warnings
tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary())
with open(report_files["passes"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_passes()
with open(report_files["summary_short"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.short_test_summary()
with open(report_files["stats"], "w") as f:
tr._tw = create_terminal_writer(config, f)
tr.summary_stats()
# restore:
tr._tw = orig_writer
tr.reportchars = orig_reportchars
config.option.tbstyle = orig_tbstyle
# Copied from https://github.com/huggingface/transformers/blob/000e52aec8850d3fe2f360adc6fd256e5b47fe4c/src/transformers/testing_utils.py#L1905
def is_flaky(max_attempts: int = 5, wait_before_retry: Optional[float] = None, description: Optional[str] = None):
"""
To decorate flaky tests. They will be retried on failures.
Args:
max_attempts (`int`, *optional*, defaults to 5):
The maximum number of attempts to retry the flaky test.
wait_before_retry (`float`, *optional*):
If provided, will wait that number of seconds before retrying the test.
description (`str`, *optional*):
A string to describe the situation (what / where / why is flaky, link to GH issue/PR comments, errors,
etc.)
"""
def decorator(test_func_ref):
@functools.wraps(test_func_ref)
def wrapper(*args, **kwargs):
retry_count = 1
while retry_count < max_attempts:
try:
return test_func_ref(*args, **kwargs)
except Exception as err:
print(f"Test failed with {err} at try {retry_count}/{max_attempts}.", file=sys.stderr)
if wait_before_retry is not None:
time.sleep(wait_before_retry)
retry_count += 1
return test_func_ref(*args, **kwargs)
return wrapper
return decorator
# Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
"""
To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.
Args:
test_case (`unittest.TestCase`):
The test that will run `target_func`.
target_func (`Callable`):
The function implementing the actual testing logic.
inputs (`dict`, *optional*, defaults to `None`):
The inputs that will be passed to `target_func` through an (input) queue.
timeout (`int`, *optional*, defaults to `None`):
The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
"""
if timeout is None:
timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))
start_methohd = "spawn"
ctx = multiprocessing.get_context(start_methohd)
input_queue = ctx.Queue(1)
output_queue = ctx.JoinableQueue(1)
# We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
input_queue.put(inputs, timeout=timeout)
process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
process.start()
# Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
# the test to exit properly.
try:
results = output_queue.get(timeout=timeout)
output_queue.task_done()
except Exception as e:
process.terminate()
test_case.fail(e)
process.join(timeout=timeout)
if results["error"] is not None:
test_case.fail(f'{results["error"]}')
class CaptureLogger:
"""
Args:
Context manager to capture `logging` streams
logger: 'logging` logger object
Returns:
The captured output is available via `self.out`
Example:
```python
>>> from diffusers import logging
>>> from diffusers.testing_utils import CaptureLogger
>>> msg = "Testing 1, 2, 3"
>>> logging.set_verbosity_info()
>>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
>>> with CaptureLogger(logger) as cl:
... logger.info(msg)
>>> assert cl.out, msg + "\n"
```
"""
def __init__(self, logger):
self.logger = logger
self.io = StringIO()
self.sh = logging.StreamHandler(self.io)
self.out = ""
def __enter__(self):
self.logger.addHandler(self.sh)
return self
def __exit__(self, *exc):
self.logger.removeHandler(self.sh)
self.out = self.io.getvalue()
def __repr__(self):
return f"captured: {self.out}\n"
def enable_full_determinism():
"""
Helper function for reproducible behavior during distributed training. See
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch
"""
# Enable PyTorch deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
def disable_full_determinism():
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ""
torch.use_deterministic_algorithms(False)
# Utils for custom and alternative accelerator devices
def _is_torch_fp16_available(device):
if not is_torch_available():
return False
import torch
device = torch.device(device)
try:
x = torch.zeros((2, 2), dtype=torch.float16).to(device)
_ = torch.mul(x, x)
return True
except Exception as e:
if device.type == "cuda":
raise ValueError(
f"You have passed a device of type 'cuda' which should work with 'fp16', but 'cuda' does not seem to be correctly installed on your machine: {e}"
)
return False
def _is_torch_fp64_available(device):
if not is_torch_available():
return False
import torch
device = torch.device(device)
try:
x = torch.zeros((2, 2), dtype=torch.float64).to(device)
_ = torch.mul(x, x)
return True
except Exception as e:
if device.type == "cuda":
raise ValueError(
f"You have passed a device of type 'cuda' which should work with 'fp64', but 'cuda' does not seem to be correctly installed on your machine: {e}"
)
return False
# Guard these lookups for when Torch is not used - alternative accelerator support is for PyTorch
if is_torch_available():
# Behaviour flags
BACKEND_SUPPORTS_TRAINING = {"cuda": True, "cpu": True, "mps": False, "default": True}
# Function definitions
BACKEND_EMPTY_CACHE = {"cuda": torch.cuda.empty_cache, "cpu": None, "mps": None, "default": None}
BACKEND_DEVICE_COUNT = {"cuda": torch.cuda.device_count, "cpu": lambda: 0, "mps": lambda: 0, "default": 0}
BACKEND_MANUAL_SEED = {"cuda": torch.cuda.manual_seed, "cpu": torch.manual_seed, "default": torch.manual_seed}
# This dispatches a defined function according to the accelerator from the function definitions.
def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs):
if device not in dispatch_table:
return dispatch_table["default"](*args, **kwargs)
fn = dispatch_table[device]
# Some device agnostic functions return values. Need to guard against 'None' instead at
# user level
if fn is None:
return None
return fn(*args, **kwargs)
# These are callables which automatically dispatch the function specific to the accelerator
def backend_manual_seed(device: str, seed: int):
return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed)
def backend_empty_cache(device: str):
return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE)
def backend_device_count(device: str):
return _device_agnostic_dispatch(device, BACKEND_DEVICE_COUNT)
# These are callables which return boolean behaviour flags and can be used to specify some
# device agnostic alternative where the feature is unsupported.
def backend_supports_training(device: str):
if not is_torch_available():
return False
if device not in BACKEND_SUPPORTS_TRAINING:
device = "default"
return BACKEND_SUPPORTS_TRAINING[device]
# Guard for when Torch is not available
if is_torch_available():
# Update device function dict mapping
def update_mapping_from_spec(device_fn_dict: Dict[str, Callable], attribute_name: str):
try:
# Try to import the function directly
spec_fn = getattr(device_spec_module, attribute_name)
device_fn_dict[torch_device] = spec_fn
except AttributeError as e:
# If the function doesn't exist, and there is no default, throw an error
if "default" not in device_fn_dict:
raise AttributeError(
f"`{attribute_name}` not found in '{device_spec_path}' and no default fallback function found."
) from e
if "DIFFUSERS_TEST_DEVICE_SPEC" in os.environ:
device_spec_path = os.environ["DIFFUSERS_TEST_DEVICE_SPEC"]
if not Path(device_spec_path).is_file():
raise ValueError(f"Specified path to device specification file is not found. Received {device_spec_path}")
try:
import_name = device_spec_path[: device_spec_path.index(".py")]
except ValueError as e:
raise ValueError(f"Provided device spec file is not a Python file! Received {device_spec_path}") from e
device_spec_module = importlib.import_module(import_name)
try:
device_name = device_spec_module.DEVICE_NAME
except AttributeError:
raise AttributeError("Device spec file did not contain `DEVICE_NAME`")
if "DIFFUSERS_TEST_DEVICE" in os.environ and torch_device != device_name:
msg = f"Mismatch between environment variable `DIFFUSERS_TEST_DEVICE` '{torch_device}' and device found in spec '{device_name}'\n"
msg += "Either unset `DIFFUSERS_TEST_DEVICE` or ensure it matches device spec name."
raise ValueError(msg)
torch_device = device_name
# Add one entry here for each `BACKEND_*` dictionary.
update_mapping_from_spec(BACKEND_MANUAL_SEED, "MANUAL_SEED_FN")
update_mapping_from_spec(BACKEND_EMPTY_CACHE, "EMPTY_CACHE_FN")
update_mapping_from_spec(BACKEND_DEVICE_COUNT, "DEVICE_COUNT_FN")
update_mapping_from_spec(BACKEND_SUPPORTS_TRAINING, "SUPPORTS_TRAINING")
|