File size: 6,597 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AmusedPipeline
    params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = UVit2DModel(
            hidden_size=8,
            use_bias=False,
            hidden_dropout=0.0,
            cond_embed_dim=8,
            micro_cond_encode_dim=2,
            micro_cond_embed_dim=10,
            encoder_hidden_size=8,
            vocab_size=32,
            codebook_size=8,
            in_channels=8,
            block_out_channels=8,
            num_res_blocks=1,
            downsample=True,
            upsample=True,
            block_num_heads=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            attention_dropout=0.0,
            intermediate_size=8,
            layer_norm_eps=1e-06,
            ln_elementwise_affine=True,
        )
        scheduler = AmusedScheduler(mask_token_id=31)
        torch.manual_seed(0)
        vqvae = VQModel(
            act_fn="silu",
            block_out_channels=[8],
            down_block_types=[
                "DownEncoderBlock2D",
            ],
            in_channels=3,
            latent_channels=8,
            layers_per_block=1,
            norm_num_groups=8,
            num_vq_embeddings=8,
            out_channels=3,
            sample_size=8,
            up_block_types=[
                "UpDecoderBlock2D",
            ],
            mid_block_add_attention=False,
            lookup_from_codebook=True,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=8,
            intermediate_size=8,
            layer_norm_eps=1e-05,
            num_attention_heads=1,
            num_hidden_layers=1,
            pad_token_id=1,
            vocab_size=1000,
            projection_dim=8,
        )
        text_encoder = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "transformer": transformer,
            "scheduler": scheduler,
            "vqvae": vqvae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
            "height": 4,
            "width": 4,
        }
        return inputs

    def test_inference_batch_consistent(self, batch_sizes=[2]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)

    @unittest.skip("aMUSEd does not support lists of generators")
    def test_inference_batch_single_identical(self):
        ...


@slow
@require_torch_gpu
class AmusedPipelineSlowTests(unittest.TestCase):
    def test_amused_256(self):
        pipe = AmusedPipeline.from_pretrained("amused/amused-256")
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4011, 0.3992, 0.3790, 0.3856, 0.3772, 0.3711, 0.3919, 0.3850, 0.3625])
        assert np.abs(image_slice - expected_slice).max() < 3e-3

    def test_amused_256_fp16(self):
        pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
        assert np.abs(image_slice - expected_slice).max() < 7e-3

    def test_amused_512(self):
        pipe = AmusedPipeline.from_pretrained("amused/amused-512")
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9960, 0.9960, 0.9946, 0.9980, 0.9947, 0.9932, 0.9960, 0.9961, 0.9947])
        assert np.abs(image_slice - expected_slice).max() < 3e-3

    def test_amused_512_fp16(self):
        pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9983, 1.0, 1.0, 1.0, 1.0, 0.9989, 0.9994, 0.9976, 0.9977])
        assert np.abs(image_slice - expected_slice).max() < 3e-3