File size: 10,802 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
nightly,
require_torch_2,
require_torch_gpu,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ConsistencyModelPipeline
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
@property
def dummy_uncond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet",
)
return unet
@property
def dummy_cond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet_class_cond",
)
return unet
def get_dummy_components(self, class_cond=False):
if class_cond:
unet = self.dummy_cond_unet
else:
unet = self.dummy_uncond_unet
# Default to CM multistep sampler
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
components = {
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def test_consistency_model_pipeline_multistep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_multistep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@nightly
@require_torch_gpu
class ConsistencyModelPipelineSlowTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
generator = torch.manual_seed(seed)
inputs = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape)
inputs["latents"] = latents
return inputs
def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
if isinstance(device, str):
device = torch.device(device)
generator = torch.Generator(device=device).manual_seed(seed)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def test_consistency_model_cd_multistep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0146, 0.0158, 0.0092, 0.0086, 0.0000, 0.0000, 0.0000, 0.0000, 0.0058])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_cd_onestep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0059, 0.0003, 0.0000, 0.0023, 0.0052, 0.0007, 0.0165, 0.0081, 0.0095])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@require_torch_2
def test_consistency_model_cd_multistep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1845, 0.1371, 0.1211, 0.2035, 0.1954, 0.1323, 0.1773, 0.1593, 0.1314])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@require_torch_2
def test_consistency_model_cd_onestep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1623, 0.2009, 0.2387, 0.1731, 0.1168, 0.1202, 0.2031, 0.1327, 0.2447])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|