File size: 5,763 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, skip_mps, torch_device
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = DanceDiffusionPipeline
params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
test_attention_slicing = False
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet1DModel(
block_out_channels=(32, 32, 64),
extra_in_channels=16,
sample_size=512,
sample_rate=16_000,
in_channels=2,
out_channels=2,
flip_sin_to_cos=True,
use_timestep_embedding=False,
time_embedding_type="fourier",
mid_block_type="UNetMidBlock1D",
down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
)
scheduler = IPNDMScheduler()
components = {
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 4,
}
return inputs
def test_dance_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = DanceDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@nightly
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_dance_diffusion(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.config.sample_size)
expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
def test_dance_diffusion_fp16(self):
device = torch_device
pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
audio = output.audios
audio_slice = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.config.sample_size)
expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341])
assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
|