File size: 7,366 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import KandinskyV22PriorEmb2EmbPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class KandinskyV22PriorEmb2EmbPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22PriorEmb2EmbPipeline
    params = ["prompt", "image"]
    batch_params = ["prompt", "image"]
    required_optional_params = [
        "num_images_per_prompt",
        "strength",
        "generator",
        "num_inference_steps",
        "negative_prompt",
        "guidance_scale",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
        model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape))
        return model

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            image_size=224,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_channels=3,
            num_hidden_layers=5,
            patch_size=14,
        )

        model = CLIPVisionModelWithProjection(config)
        return model

    @property
    def dummy_image_processor(self):
        image_processor = CLIPImageProcessor(
            crop_size=224,
            do_center_crop=True,
            do_normalize=True,
            do_resize=True,
            image_mean=[0.48145466, 0.4578275, 0.40821073],
            image_std=[0.26862954, 0.26130258, 0.27577711],
            resample=3,
            size=224,
        )

        return image_processor

    def get_dummy_components(self):
        prior = self.dummy_prior
        image_encoder = self.dummy_image_encoder
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        image_processor = self.dummy_image_processor

        scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample=True,
            clip_sample_range=10.0,
        )

        components = {
            "prior": prior,
            "image_encoder": image_encoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "image_processor": image_processor,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))

        inputs = {
            "prompt": "horse",
            "image": init_image,
            "strength": 0.5,
            "generator": generator,
            "guidance_scale": 4.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_kandinsky_prior_emb2emb(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.image_embeds

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -10:]
        image_from_tuple_slice = image_from_tuple[0, -10:]

        assert image.shape == (1, 32)

        expected_slice = np.array(
            [
                0.1071284,
                1.3330271,
                0.61260223,
                -0.6691065,
                -0.3846852,
                -1.0303661,
                0.22716111,
                0.03348901,
                0.30040675,
                -0.24805029,
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-2)

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"
        test_mean_pixel_difference = False

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference,
            test_mean_pixel_difference=test_mean_pixel_difference,
        )