File size: 8,606 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from diffusers import (
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    OnnxStableDiffusionUpscalePipeline,
    PNDMScheduler,
)
from diffusers.utils.testing_utils import (
    floats_tensor,
    is_onnx_available,
    load_image,
    nightly,
    require_onnxruntime,
    require_torch_gpu,
)

from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin


if is_onnx_available():
    import onnxruntime as ort


class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
    # TODO: is there an appropriate internal test set?
    hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx"

    def get_dummy_inputs(self, seed=0):
        image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed))
        generator = np.random.RandomState(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def test_pipeline_default_ddpm(self):
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs()
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        # started as 128, should now be 512
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.6957, 0.7002, 0.7186, 0.6881, 0.6693, 0.6910, 0.7445, 0.7274, 0.7056])
        assert np.abs(image_slice - expected_slice).max() < 1e-1

    def test_pipeline_pndm(self):
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs()
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.7349, 0.7347, 0.7034, 0.7696, 0.7876, 0.7597, 0.7916, 0.8085, 0.8036])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

    def test_pipeline_dpm_multistep(self):
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs()
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array(
            [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

    def test_pipeline_euler(self):
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs()
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array(
            [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

    def test_pipeline_euler_ancestral(self):
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs()
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array(
            [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1


@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
    @property
    def gpu_provider(self):
        return (
            "CUDAExecutionProvider",
            {
                "gpu_mem_limit": "15000000000",  # 15GB
                "arena_extend_strategy": "kSameAsRequested",
            },
        )

    @property
    def gpu_options(self):
        options = ort.SessionOptions()
        options.enable_mem_pattern = False
        return options

    def test_inference_default_ddpm(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((128, 128))
        # using the PNDM scheduler by default
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
            "ssube/stable-diffusion-x4-upscaler-onnx",
            provider=self.gpu_provider,
            sess_options=self.gpu_options,
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = np.random.RandomState(0)
        output = pipe(
            prompt=prompt,
            image=init_image,
            guidance_scale=7.5,
            num_inference_steps=10,
            generator=generator,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 383:386, -1]

        assert images.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972])
        # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues

        assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2

    def test_inference_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((128, 128))
        lms_scheduler = LMSDiscreteScheduler.from_pretrained(
            "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler"
        )
        pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
            "ssube/stable-diffusion-x4-upscaler-onnx",
            scheduler=lms_scheduler,
            provider=self.gpu_provider,
            sess_options=self.gpu_options,
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = np.random.RandomState(0)
        output = pipe(
            prompt=prompt,
            image=init_image,
            guidance_scale=7.5,
            num_inference_steps=20,
            generator=generator,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 383:386, -1]

        assert images.shape == (1, 512, 512, 3)
        expected_slice = np.array(
            [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]
        )
        # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues

        assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2