File size: 10,745 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AutoencoderKL,
    EulerDiscreteScheduler,
    StableDiffusionLatentUpscalePipeline,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin


enable_full_determinism()


def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


class StableDiffusionLatentUpscalePipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
    pipeline_class = StableDiffusionLatentUpscalePipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
        "height",
        "width",
        "cross_attention_kwargs",
        "negative_prompt_embeds",
        "prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    image_params = frozenset(
        []
    )  # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
    image_latents_params = frozenset([])

    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 4
        sizes = (16, 16)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    def get_dummy_components(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            act_fn="gelu",
            attention_head_dim=8,
            norm_num_groups=None,
            block_out_channels=[32, 32, 64, 64],
            time_cond_proj_dim=160,
            conv_in_kernel=1,
            conv_out_kernel=1,
            cross_attention_dim=32,
            down_block_types=(
                "KDownBlock2D",
                "KCrossAttnDownBlock2D",
                "KCrossAttnDownBlock2D",
                "KCrossAttnDownBlock2D",
            ),
            in_channels=8,
            mid_block_type=None,
            only_cross_attention=False,
            out_channels=5,
            resnet_time_scale_shift="scale_shift",
            time_embedding_type="fourier",
            timestep_post_act="gelu",
            up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
        )
        vae = AutoencoderKL(
            block_out_channels=[32, 32, 64, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=[
                "DownEncoderBlock2D",
                "DownEncoderBlock2D",
                "DownEncoderBlock2D",
                "DownEncoderBlock2D",
            ],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        scheduler = EulerDiscreteScheduler(prediction_type="sample")
        text_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="quick_gelu",
            projection_dim=512,
        )
        text_encoder = CLIPTextModel(text_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": model.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": self.dummy_image.cpu(),
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 256, 256, 3))
        expected_slice = np.array(
            [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=7e-3)

    def test_sequential_cpu_offload_forward_pass(self):
        super().test_sequential_cpu_offload_forward_pass(expected_max_diff=3e-3)

    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=7e-3)

    def test_pt_np_pil_outputs_equivalent(self):
        super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3)

    def test_save_load_local(self):
        super().test_save_load_local(expected_max_difference=3e-3)

    def test_save_load_optional_components(self):
        super().test_save_load_optional_components(expected_max_difference=3e-3)

    def test_karras_schedulers_shape(self):
        skip_schedulers = [
            "DDIMScheduler",
            "DDPMScheduler",
            "PNDMScheduler",
            "HeunDiscreteScheduler",
            "EulerAncestralDiscreteScheduler",
            "KDPM2DiscreteScheduler",
            "KDPM2AncestralDiscreteScheduler",
            "DPMSolverSDEScheduler",
            "EDMEulerScheduler",
        ]
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if scheduler_enum.name in skip_schedulers:
                # no sigma schedulers are not supported
                # no schedulers
                continue

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

        assert check_same_shape(outputs)

    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=5e-1)


@require_torch_gpu
@slow
class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_latent_upscaler_fp16(self):
        generator = torch.manual_seed(33)

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
        pipe.to("cuda")

        upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
            "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
        )
        upscaler.to("cuda")

        prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"

        low_res_latents = pipe(prompt, generator=generator, output_type="latent").images

        image = upscaler(
            prompt=prompt,
            image=low_res_latents,
            num_inference_steps=20,
            guidance_scale=0,
            generator=generator,
            output_type="np",
        ).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy"
        )
        assert np.abs((expected_image - image).mean()) < 5e-2

    def test_latent_upscaler_fp16_image(self):
        generator = torch.manual_seed(33)

        upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
            "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
        )
        upscaler.to("cuda")

        prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"

        low_res_img = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png"
        )

        image = upscaler(
            prompt=prompt,
            image=low_res_img,
            num_inference_steps=20,
            guidance_scale=0,
            generator=generator,
            output_type="np",
        ).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy"
        )
        assert np.abs((expected_image - image).max()) < 5e-2