File size: 7,720 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DEISMultistepScheduler,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler,
    StableDiffusionSAGPipeline,
    UNet2DConditionModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)


enable_full_determinism()


class StableDiffusionSAGPipelineFastTests(
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
    PipelineFromPipeTesterMixin,
    unittest.TestCase,
):
    pipeline_class = StableDiffusionSAGPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(4, 8),
            layers_per_block=2,
            sample_size=8,
            norm_num_groups=1,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=8,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[4, 8],
            norm_num_groups=1,
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=8,
            num_hidden_layers=2,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": ".",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 1.0,
            "sag_scale": 1.0,
            "output_type": "np",
        }
        return inputs

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

    @unittest.skip("Not necessary to test here.")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

    def test_pipeline_different_schedulers(self):
        pipeline = self.pipeline_class(**self.get_dummy_components())
        inputs = self.get_dummy_inputs("cpu")

        expected_image_size = (16, 16, 3)
        for scheduler_cls in [DDIMScheduler, DEISMultistepScheduler, DPMSolverMultistepScheduler]:
            pipeline.scheduler = scheduler_cls.from_config(pipeline.scheduler.config)
            image = pipeline(**inputs).images[0]

            shape = image.shape
            assert shape == expected_image_size

        pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)

        with self.assertRaises(ValueError):
            # Karras schedulers are not supported
            image = pipeline(**inputs).images[0]


@nightly
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_diffusion_1(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
        )

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2

    def test_stable_diffusion_2(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
        )

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2

    def test_stable_diffusion_2_non_square(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt],
            width=768,
            height=512,
            generator=generator,
            guidance_scale=7.5,
            sag_scale=1.0,
            num_inference_steps=20,
            output_type="np",
        )

        image = output.images

        assert image.shape == (1, 512, 768, 3)