File size: 26,093 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np
import torch
from parameterized import parameterized
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

import diffusers
from diffusers import (
    AutoencoderKL,
    EulerDiscreteScheduler,
    LCMScheduler,
    MultiAdapter,
    StableDiffusionXLAdapterPipeline,
    T2IAdapter,
    UNet2DConditionModel,
)
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    torch_device,
)

from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineTesterMixin,
    SDXLOptionalComponentsTesterMixin,
    assert_mean_pixel_difference,
)


enable_full_determinism()


class StableDiffusionXLAdapterPipelineFastTests(
    IPAdapterTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase
):
    pipeline_class = StableDiffusionXLAdapterPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS

    def get_dummy_components(self, adapter_type="full_adapter_xl", time_cond_proj_dim=None):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
            time_cond_proj_dim=time_cond_proj_dim,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        if adapter_type == "full_adapter_xl":
            adapter = T2IAdapter(
                in_channels=3,
                channels=[32, 64],
                num_res_blocks=2,
                downscale_factor=4,
                adapter_type=adapter_type,
            )
        elif adapter_type == "multi_adapter":
            adapter = MultiAdapter(
                [
                    T2IAdapter(
                        in_channels=3,
                        channels=[32, 64],
                        num_res_blocks=2,
                        downscale_factor=4,
                        adapter_type="full_adapter_xl",
                    ),
                    T2IAdapter(
                        in_channels=3,
                        channels=[32, 64],
                        num_res_blocks=2,
                        downscale_factor=4,
                        adapter_type="full_adapter_xl",
                    ),
                ]
            )
        else:
            raise ValueError(
                f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter_xl', or 'multi_adapter''"
            )

        components = {
            "adapter": adapter,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            # "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_components_with_full_downscaling(self, adapter_type="full_adapter_xl"):
        """Get dummy components with x8 VAE downscaling and 3 UNet down blocks.
        These dummy components are intended to fully-exercise the T2I-Adapter
        downscaling behavior.
        """
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=2,
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=1,
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 32, 32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        if adapter_type == "full_adapter_xl":
            adapter = T2IAdapter(
                in_channels=3,
                channels=[32, 32, 64],
                num_res_blocks=2,
                downscale_factor=16,
                adapter_type=adapter_type,
            )
        elif adapter_type == "multi_adapter":
            adapter = MultiAdapter(
                [
                    T2IAdapter(
                        in_channels=3,
                        channels=[32, 32, 64],
                        num_res_blocks=2,
                        downscale_factor=16,
                        adapter_type="full_adapter_xl",
                    ),
                    T2IAdapter(
                        in_channels=3,
                        channels=[32, 32, 64],
                        num_res_blocks=2,
                        downscale_factor=16,
                        adapter_type="full_adapter_xl",
                    ),
                ]
            )
        else:
            raise ValueError(
                f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter_xl', or 'multi_adapter''"
            )

        components = {
            "adapter": adapter,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            # "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0, height=64, width=64, num_images=1):
        if num_images == 1:
            image = floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device)
        else:
            image = [
                floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device) for _ in range(num_images)
            ]

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
        }
        return inputs

    def test_ip_adapter_single(self, from_multi=False, expected_pipe_slice=None):
        if not from_multi:
            expected_pipe_slice = None
            if torch_device == "cpu":
                expected_pipe_slice = np.array(
                    [0.5753, 0.6022, 0.4728, 0.4986, 0.5708, 0.4645, 0.5194, 0.5134, 0.4730]
                )
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

    def test_stable_diffusion_adapter_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.5752919, 0.6022097, 0.4728038, 0.49861962, 0.57084894, 0.4644975, 0.5193715, 0.5133664, 0.4729858]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3

    @parameterized.expand(
        [
            # (dim=144) The internal feature map will be 9x9 after initial pixel unshuffling (downscaled x16).
            (((4 * 2 + 1) * 16),),
            # (dim=160) The internal feature map will be 5x5 after the first T2I down block (downscaled x32).
            (((4 * 1 + 1) * 32),),
        ]
    )
    def test_multiple_image_dimensions(self, dim):
        """Test that the T2I-Adapter pipeline supports any input dimension that
        is divisible by the adapter's `downscale_factor`. This test was added in
        response to an issue where the T2I Adapter's downscaling padding
        behavior did not match the UNet's behavior.

        Note that we have selected `dim` values to produce odd resolutions at
        each downscaling level.
        """
        components = self.get_dummy_components_with_full_downscaling()
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device, height=dim, width=dim)
        image = sd_pipe(**inputs).images

        assert image.shape == (1, dim, dim, 3)

    @parameterized.expand(["full_adapter", "full_adapter_xl", "light_adapter"])
    def test_total_downscale_factor(self, adapter_type):
        """Test that the T2IAdapter correctly reports its total_downscale_factor."""
        batch_size = 1
        in_channels = 3
        out_channels = [320, 640, 1280, 1280]
        in_image_size = 512

        adapter = T2IAdapter(
            in_channels=in_channels,
            channels=out_channels,
            num_res_blocks=2,
            downscale_factor=8,
            adapter_type=adapter_type,
        )
        adapter.to(torch_device)

        in_image = floats_tensor((batch_size, in_channels, in_image_size, in_image_size)).to(torch_device)

        adapter_state = adapter(in_image)

        # Assume that the last element in `adapter_state` has been downsampled the most, and check
        # that it matches the `total_downscale_factor`.
        expected_out_image_size = in_image_size // adapter.total_downscale_factor
        assert adapter_state[-1].shape == (
            batch_size,
            out_channels[-1],
            expected_out_image_size,
            expected_out_image_size,
        )

    def test_save_load_optional_components(self):
        return self._test_save_load_optional_components()

    def test_adapter_sdxl_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5425, 0.5385, 0.4964, 0.5045, 0.6149, 0.4974, 0.5469, 0.5332, 0.5426])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_adapter_sdxl_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5425, 0.5385, 0.4964, 0.5045, 0.6149, 0.4974, 0.5469, 0.5332, 0.5426])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


class StableDiffusionXLMultiAdapterPipelineFastTests(
    StableDiffusionXLAdapterPipelineFastTests, PipelineTesterMixin, unittest.TestCase
):
    def get_dummy_components(self, time_cond_proj_dim=None):
        return super().get_dummy_components("multi_adapter", time_cond_proj_dim=time_cond_proj_dim)

    def get_dummy_components_with_full_downscaling(self):
        return super().get_dummy_components_with_full_downscaling("multi_adapter")

    def get_dummy_inputs(self, device, seed=0, height=64, width=64):
        inputs = super().get_dummy_inputs(device, seed, height, width, num_images=2)
        inputs["adapter_conditioning_scale"] = [0.5, 0.5]
        return inputs

    def test_stable_diffusion_adapter_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.5813032, 0.60995954, 0.47563356, 0.5056669, 0.57199144, 0.4631841, 0.5176794, 0.51252556, 0.47183886]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3

    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5813, 0.6100, 0.4756, 0.5057, 0.5720, 0.4632, 0.5177, 0.5125, 0.4718])
        return super().test_ip_adapter_single(from_multi=True, expected_pipe_slice=expected_pipe_slice)

    def test_inference_batch_consistent(
        self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        for batch_size in batch_sizes:
            batched_inputs = {}
            for name, value in inputs.items():
                if name in self.batch_params:
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 100 * "very long"
                    elif name == "image":
                        batched_images = []

                        for image in value:
                            batched_images.append(batch_size * [image])

                        batched_inputs[name] = batched_images
                    else:
                        batched_inputs[name] = batch_size * [value]

                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

            for arg in additional_params_copy_to_batched_inputs:
                batched_inputs[arg] = inputs[arg]

            batched_inputs["output_type"] = "np"

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)

    def test_num_images_per_prompt(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        if key == "image":
                            batched_images = []

                            for image in inputs[key]:
                                batched_images.append(batch_size * [image])

                            inputs[key] = batched_images
                        else:
                            inputs[key] = batch_size * [inputs[key]]

                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]

                assert images.shape[0] == batch_size * num_images_per_prompt

    def test_inference_batch_single_identical(
        self,
        batch_size=3,
        test_max_difference=None,
        test_mean_pixel_difference=None,
        relax_max_difference=False,
        expected_max_diff=2e-3,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batch_size = batch_size
        for name, value in inputs.items():
            if name in self.batch_params:
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 100 * "very long"
                elif name == "image":
                    batched_images = []

                    for image in value:
                        batched_images.append(batch_size * [image])

                    batched_inputs[name] = batched_images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

        logger.setLevel(level=diffusers.logging.WARNING)
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
                diff = diff.flatten()
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
            assert max_diff < expected_max_diff

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])

    def test_adapter_sdxl_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5313, 0.5375, 0.4942, 0.5021, 0.6142, 0.4968, 0.5434, 0.5311, 0.5448])

        debug = [str(round(i, 4)) for i in image_slice.flatten().tolist()]
        print(",".join(debug))

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_adapter_sdxl_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLAdapterPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5313, 0.5375, 0.4942, 0.5021, 0.6142, 0.4968, 0.5434, 0.5311, 0.5448])

        debug = [str(round(i, 4)) for i in image_slice.flatten().tolist()]
        print(",".join(debug))

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2