File size: 21,511 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

import diffusers
from diffusers import (
    AutoencoderKLTemporalDecoder,
    EulerDiscreteScheduler,
    StableVideoDiffusionPipeline,
    UNetSpatioTemporalConditionModel,
)
from diffusers.utils import is_accelerate_available, is_accelerate_version, load_image, logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
    floats_tensor,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


class StableVideoDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableVideoDiffusionPipeline
    params = frozenset(["image"])
    batch_params = frozenset(["image", "generator"])
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
        ]
    )

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNetSpatioTemporalConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=8,
            out_channels=4,
            down_block_types=(
                "CrossAttnDownBlockSpatioTemporal",
                "DownBlockSpatioTemporal",
            ),
            up_block_types=("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal"),
            cross_attention_dim=32,
            num_attention_heads=8,
            projection_class_embeddings_input_dim=96,
            addition_time_embed_dim=32,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            interpolation_type="linear",
            num_train_timesteps=1000,
            prediction_type="v_prediction",
            sigma_max=700.0,
            sigma_min=0.002,
            steps_offset=1,
            timestep_spacing="leading",
            timestep_type="continuous",
            trained_betas=None,
            use_karras_sigmas=True,
        )

        torch.manual_seed(0)
        vae = AutoencoderKLTemporalDecoder(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            latent_channels=4,
        )

        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=32,
            projection_dim=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            image_size=32,
            intermediate_size=37,
            patch_size=1,
        )
        image_encoder = CLIPVisionModelWithProjection(config)

        torch.manual_seed(0)
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
        components = {
            "unet": unet,
            "image_encoder": image_encoder,
            "scheduler": scheduler,
            "vae": vae,
            "feature_extractor": feature_extractor,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        image = floats_tensor((1, 3, 32, 32), rng=random.Random(0)).to(device)
        inputs = {
            "generator": generator,
            "image": image,
            "num_inference_steps": 2,
            "output_type": "pt",
            "min_guidance_scale": 1.0,
            "max_guidance_scale": 2.5,
            "num_frames": 2,
            "height": 32,
            "width": 32,
        }
        return inputs

    @unittest.skip("Deprecated functionality")
    def test_attention_slicing_forward_pass(self):
        pass

    @unittest.skip("Batched inference works and outputs look correct, but the test is failing")
    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()
        pipe.to(torch_device)

        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)

        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = torch.Generator("cpu").manual_seed(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        batched_inputs["generator"] = [torch.Generator("cpu").manual_seed(0) for i in range(batch_size)]
        batched_inputs["image"] = torch.cat([inputs["image"]] * batch_size, dim=0)

        output = pipe(**inputs).frames
        output_batch = pipe(**batched_inputs).frames

        assert len(output_batch) == batch_size

        max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
        assert max_diff < expected_max_diff

    @unittest.skip("Test is similar to test_inference_batch_single_identical")
    def test_inference_batch_consistent(self):
        pass

    def test_np_output_type(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
        inputs["output_type"] = "np"
        output = pipe(**inputs).frames
        self.assertTrue(isinstance(output, np.ndarray))
        self.assertEqual(len(output.shape), 5)

    def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        output = pipe(**self.get_dummy_inputs(generator_device)).frames[0]
        output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]

        max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
        self.assertLess(max_diff, expected_max_difference)

    @unittest.skip("Test is currently failing")
    def test_float16_inference(self, expected_max_diff=5e-2):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        components = self.get_dummy_components()
        pipe_fp16 = self.pipeline_class(**components)
        for component in pipe_fp16.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe_fp16.to(torch_device, torch.float16)
        pipe_fp16.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs).frames[0]

        fp16_inputs = self.get_dummy_inputs(torch_device)
        output_fp16 = pipe_fp16(**fp16_inputs).frames[0]

        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self, expected_max_diff=1e-2):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()

        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs).frames[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs).frames[0]
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )

    def test_save_load_optional_components(self, expected_max_difference=1e-4):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
        output = pipe(**inputs).frames[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, safe_serialization=False)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(generator_device)
        output_loaded = pipe_loaded(**inputs).frames[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)

    def test_save_load_local(self, expected_max_difference=9e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs).frames[0]

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, safe_serialization=False)

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs).frames[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu")).frames[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda")).frames[0]
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

        pipe.to(dtype=torch.float16)
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
    )
    def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
        output_without_offload = pipe(**inputs).frames[0]

        pipe.enable_sequential_cpu_offload()

        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs).frames[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher",
    )
    def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(generator_device)
        output_without_offload = pipe(**inputs).frames[0]

        pipe.enable_model_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs).frames[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
        offloaded_modules = [
            v
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
        ]
        (
            self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)),
            f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}",
        )

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        expected_max_diff = 9e-4

        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs).frames[0]
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs).frames[0]
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")

    def test_disable_cfg(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
        inputs["max_guidance_scale"] = 1.0
        output = pipe(**inputs).frames
        self.assertEqual(len(output.shape), 5)


@slow
@require_torch_gpu
class StableVideoDiffusionPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_sd_video(self):
        pipe = StableVideoDiffusionPipeline.from_pretrained(
            "stabilityai/stable-video-diffusion-img2vid",
            variant="fp16",
            torch_dtype=torch.float16,
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
        )

        generator = torch.Generator("cpu").manual_seed(0)
        num_frames = 3

        output = pipe(
            image=image,
            num_frames=num_frames,
            generator=generator,
            num_inference_steps=3,
            output_type="np",
        )

        image = output.frames[0]
        assert image.shape == (num_frames, 576, 1024, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.8592, 0.8645, 0.8499, 0.8722, 0.8769, 0.8421, 0.8557, 0.8528, 0.8285])
        assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3