File size: 6,754 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gc
import tempfile
import unittest

import torch

from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
)

from .single_file_testing_utils import (
    SDSingleFileTesterMixin,
    download_diffusers_config,
    download_original_config,
    download_single_file_checkpoint,
)


enable_full_determinism()


@slow
@require_torch_gpu
class StableDiffusionControlNetPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
    pipeline_class = StableDiffusionControlNetPipeline
    ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
    original_config = (
        "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
    )
    repo_id = "runwayml/stable-diffusion-v1-5"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self):
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        inputs = {
            "prompt": "bird",
            "image": control_image,
            "generator": torch.Generator(device="cpu").manual_seed(0),
            "num_inference_steps": 3,
            "output_type": "np",
        }

        return inputs

    def test_single_file_format_inference_is_same_as_pretrained(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
        pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet)
        pipe.unet.set_default_attn_processor()
        pipe.enable_model_cpu_offload()

        pipe_sf = self.pipeline_class.from_single_file(
            self.ckpt_path,
            controlnet=controlnet,
        )
        pipe_sf.unet.set_default_attn_processor()
        pipe_sf.enable_model_cpu_offload()

        inputs = self.get_inputs()
        output = pipe(**inputs).images[0]

        inputs = self.get_inputs()
        output_sf = pipe_sf(**inputs).images[0]

        max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
        assert max_diff < 1e-3

    def test_single_file_components(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, variant="fp16", safety_checker=None, controlnet=controlnet
        )
        pipe_single_file = self.pipeline_class.from_single_file(
            self.ckpt_path,
            safety_checker=None,
            controlnet=controlnet,
        )

        super()._compare_component_configs(pipe, pipe_single_file)

    def test_single_file_components_local_files_only(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
        pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet)

        with tempfile.TemporaryDirectory() as tmpdir:
            ckpt_filename = self.ckpt_path.split("/")[-1]
            local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)

            pipe_single_file = self.pipeline_class.from_single_file(
                local_ckpt_path, controlnet=controlnet, local_files_only=True
            )

        super()._compare_component_configs(pipe, pipe_single_file)

    def test_single_file_components_with_original_config(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16")
        pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet)
        pipe_single_file = self.pipeline_class.from_single_file(
            self.ckpt_path, controlnet=controlnet, original_config=self.original_config
        )

        super()._compare_component_configs(pipe, pipe_single_file)

    def test_single_file_components_with_original_config_local_files_only(self):
        controlnet = ControlNetModel.from_pretrained(
            "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16"
        )
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id,
            controlnet=controlnet,
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            ckpt_filename = self.ckpt_path.split("/")[-1]
            local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
            local_original_config = download_original_config(self.original_config, tmpdir)

            pipe_single_file = self.pipeline_class.from_single_file(
                local_ckpt_path, original_config=local_original_config, controlnet=controlnet, local_files_only=True
            )
            pipe_single_file.scheduler = pipe.scheduler

        super()._compare_component_configs(pipe, pipe_single_file)

    def test_single_file_components_with_diffusers_config(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16")
        pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet)
        pipe_single_file = self.pipeline_class.from_single_file(
            self.ckpt_path, controlnet=controlnet, safety_checker=None, config=self.repo_id
        )

        super()._compare_component_configs(pipe, pipe_single_file)

    def test_single_file_components_with_diffusers_config_local_files_only(self):
        controlnet = ControlNetModel.from_pretrained(
            "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16"
        )
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id,
            controlnet=controlnet,
            safety_checker=None,
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            ckpt_filename = self.ckpt_path.split("/")[-1]
            local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir)
            local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir)

            pipe_single_file = self.pipeline_class.from_single_file(
                local_ckpt_path,
                config=local_diffusers_config,
                controlnet=controlnet,
                safety_checker=None,
                local_files_only=True,
            )
        super()._compare_component_configs(pipe, pipe_single_file)