File size: 27,582 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DreamBooth
[DreamBooth](https://huggingface.co/papers/2208.12242) is a training technique that updates the entire diffusion model by training on just a few images of a subject or style. It works by associating a special word in the prompt with the example images.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. You should have a GPU with >30GB of memory if you want to train faster with Flax.
This guide will explore the [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) script to help you become more familiar with it, and how you can adapt it for your own use-case.
Before running the script, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Navigate to the example folder with the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/dreambooth
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/dreambooth
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
</Tip>
Initialize an 🤗 Accelerate environment:
```bash
accelerate config
```
To setup a default 🤗 Accelerate environment without choosing any configurations:
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```py
from accelerate.utils import write_basic_config
write_basic_config()
```
Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.
<Tip>
The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) and let us know if you have any questions or concerns.
</Tip>
## Script parameters
<Tip warning={true}>
DreamBooth is very sensitive to training hyperparameters, and it is easy to overfit. Read the [Training Stable Diffusion with Dreambooth using 🧨 Diffusers](https://huggingface.co/blog/dreambooth) blog post for recommended settings for different subjects to help you choose the appropriate hyperparameters.
</Tip>
The training script offers many parameters for customizing your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L228) function. The parameters are set with default values that should work pretty well out-of-the-box, but you can also set your own values in the training command if you'd like.
For example, to train in the bf16 format:
```bash
accelerate launch train_dreambooth.py \
--mixed_precision="bf16"
```
Some basic and important parameters to know and specify are:
- `--pretrained_model_name_or_path`: the name of the model on the Hub or a local path to the pretrained model
- `--instance_data_dir`: path to a folder containing the training dataset (example images)
- `--instance_prompt`: the text prompt that contains the special word for the example images
- `--train_text_encoder`: whether to also train the text encoder
- `--output_dir`: where to save the trained model
- `--push_to_hub`: whether to push the trained model to the Hub
- `--checkpointing_steps`: frequency of saving a checkpoint as the model trains; this is useful if for some reason training is interrupted, you can continue training from that checkpoint by adding `--resume_from_checkpoint` to your training command
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
```bash
accelerate launch train_dreambooth.py \
--snr_gamma=5.0
```
### Prior preservation loss
Prior preservation loss is a method that uses a model's own generated samples to help it learn how to generate more diverse images. Because these generated sample images belong to the same class as the images you provided, they help the model retain what it has learned about the class and how it can use what it already knows about the class to make new compositions.
- `--with_prior_preservation`: whether to use prior preservation loss
- `--prior_loss_weight`: controls the influence of the prior preservation loss on the model
- `--class_data_dir`: path to a folder containing the generated class sample images
- `--class_prompt`: the text prompt describing the class of the generated sample images
```bash
accelerate launch train_dreambooth.py \
--with_prior_preservation \
--prior_loss_weight=1.0 \
--class_data_dir="path/to/class/images" \
--class_prompt="text prompt describing class"
```
### Train text encoder
To improve the quality of the generated outputs, you can also train the text encoder in addition to the UNet. This requires additional memory and you'll need a GPU with at least 24GB of vRAM. If you have the necessary hardware, then training the text encoder produces better results, especially when generating images of faces. Enable this option by:
```bash
accelerate launch train_dreambooth.py \
--train_text_encoder
```
## Training script
DreamBooth comes with its own dataset classes:
- [`DreamBoothDataset`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L604): preprocesses the images and class images, and tokenizes the prompts for training
- [`PromptDataset`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L738): generates the prompt embeddings to generate the class images
If you enabled [prior preservation loss](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L842), the class images are generated here:
```py
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
pipeline.to(accelerator.device)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
images = pipeline(example["prompt"]).images
```
Next is the [`main()`](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L799) function which handles setting up the dataset for training and the training loop itself. The script loads the [tokenizer](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L898), [scheduler and models](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L912C1-L912C1):
```py
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
if model_has_vae(args):
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
)
else:
vae = None
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
```
Then, it's time to [create the training dataset](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L1073) and DataLoader from `DreamBoothDataset`:
```py
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
class_num=args.num_class_images,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
encoder_hidden_states=pre_computed_encoder_hidden_states,
class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
tokenizer_max_length=args.tokenizer_max_length,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
num_workers=args.dataloader_num_workers,
)
```
Lastly, the [training loop](https://github.com/huggingface/diffusers/blob/072e00897a7cf4302c347a63ec917b4b8add16d4/examples/dreambooth/train_dreambooth.py#L1151) takes care of the remaining steps such as converting images to latent space, adding noise to the input, predicting the noise residual, and calculating the loss.
If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process.
## Launch the script
You're now ready to launch the training script! 🚀
For this guide, you'll download some images of a [dog](https://huggingface.co/datasets/diffusers/dog-example) and store them in a directory. But remember, you can create and use your own dataset if you want (see the [Create a dataset for training](create_dataset) guide).
```py
from huggingface_hub import snapshot_download
local_dir = "./dog"
snapshot_download(
"diffusers/dog-example",
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
Set the environment variable `MODEL_NAME` to a model id on the Hub or a path to a local model, `INSTANCE_DIR` to the path where you just downloaded the dog images to, and `OUTPUT_DIR` to where you want to save the model. You'll use `sks` as the special word to tie the training to.
If you're interested in following along with the training process, you can periodically save generated images as training progresses. Add the following parameters to the training command:
```bash
--validation_prompt="a photo of a sks dog"
--num_validation_images=4
--validation_steps=100
```
One more thing before you launch the script! Depending on the GPU you have, you may need to enable certain optimizations to train DreamBooth.
<hfoptions id="gpu-select">
<hfoption id="16GB">
On a 16GB GPU, you can use bitsandbytes 8-bit optimizer and gradient checkpointing to help you train a DreamBooth model. Install bitsandbytes:
```py
pip install bitsandbytes
```
Then, add the following parameter to your training command:
```bash
accelerate launch train_dreambooth.py \
--gradient_checkpointing \
--use_8bit_adam \
```
</hfoption>
<hfoption id="12GB">
On a 12GB GPU, you'll need bitsandbytes 8-bit optimizer, gradient checkpointing, xFormers, and set the gradients to `None` instead of zero to reduce your memory-usage.
```bash
accelerate launch train_dreambooth.py \
--use_8bit_adam \
--gradient_checkpointing \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none \
```
</hfoption>
<hfoption id="8GB">
On a 8GB GPU, you'll need [DeepSpeed](https://www.deepspeed.ai/) to offload some of the tensors from the vRAM to either the CPU or NVME to allow training with less GPU memory.
Run the following command to configure your 🤗 Accelerate environment:
```bash
accelerate config
```
During configuration, confirm that you want to use DeepSpeed. Now it should be possible to train on under 8GB vRAM by combining DeepSpeed stage 2, fp16 mixed precision, and offloading the model parameters and the optimizer state to the CPU. The drawback is that this requires more system RAM (~25 GB). See the [DeepSpeed documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more configuration options.
You should also change the default Adam optimizer to DeepSpeed’s optimized version of Adam [`deepspeed.ops.adam.DeepSpeedCPUAdam`](https://deepspeed.readthedocs.io/en/latest/optimizers.html#adam-cpu) for a substantial speedup. Enabling `DeepSpeedCPUAdam` requires your system’s CUDA toolchain version to be the same as the one installed with PyTorch.
bitsandbytes 8-bit optimizers don’t seem to be compatible with DeepSpeed at the moment.
That's it! You don't need to add any additional parameters to your training command.
</hfoption>
</hfoptions>
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path_to_saved_model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=400 \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=5e-6 \
--max_train_steps=400 \
--push_to_hub
```
</hfoption>
</hfoptions>
Once training is complete, you can use your newly trained model for inference!
<Tip>
Can't wait to try your model for inference before training is complete? 🤭 Make sure you have the latest version of 🤗 Accelerate installed.
```py
from diffusers import DiffusionPipeline, UNet2DConditionModel
from transformers import CLIPTextModel
import torch
unet = UNet2DConditionModel.from_pretrained("path/to/model/checkpoint-100/unet")
# if you have trained with `--args.train_text_encoder` make sure to also load the text encoder
text_encoder = CLIPTextModel.from_pretrained("path/to/model/checkpoint-100/checkpoint-100/text_encoder")
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16,
).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
```
</Tip>
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("path_to_saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
```
</hfoption>
<hfoption id="Flax">
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path-to-your-trained-model", dtype=jax.numpy.bfloat16)
prompt = "A photo of sks dog in a bucket"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("dog-bucket.png")
```
</hfoption>
</hfoptions>
## LoRA
LoRA is a training technique for significantly reducing the number of trainable parameters. As a result, training is faster and it is easier to store the resulting weights because they are a lot smaller (~100MBs). Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) script to train with LoRA.
The LoRA training script is discussed in more detail in the [LoRA training](lora) guide.
## Stable Diffusion XL
Stable Diffusion XL (SDXL) is a powerful text-to-image model that generates high-resolution images, and it adds a second text-encoder to its architecture. Use the [train_dreambooth_lora_sdxl.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py) script to train a SDXL model with LoRA.
The SDXL training script is discussed in more detail in the [SDXL training](sdxl) guide.
## DeepFloyd IF
DeepFloyd IF is a cascading pixel diffusion model with three stages. The first stage generates a base image and the second and third stages progressively upscales the base image into a high-resolution 1024x1024 image. Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) or [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) scripts to train a DeepFloyd IF model with LoRA or the full model.
DeepFloyd IF uses predicted variance, but the Diffusers training scripts uses predicted error so the trained DeepFloyd IF models are switched to a fixed variance schedule. The training scripts will update the scheduler config of the fully trained model for you. However, when you load the saved LoRA weights you must also update the pipeline's scheduler config.
```py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", use_safetensors=True)
pipe.load_lora_weights("<lora weights path>")
# Update scheduler config to fixed variance schedule
pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small")
```
The stage 2 model requires additional validation images to upscale. You can download and use a downsized version of the training images for this.
```py
from huggingface_hub import snapshot_download
local_dir = "./dog_downsized"
snapshot_download(
"diffusers/dog-example-downsized",
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
The code samples below provide a brief overview of how to train a DeepFloyd IF model with a combination of DreamBooth and LoRA. Some important parameters to note are:
* `--resolution=64`, a much smaller resolution is required because DeepFloyd IF is a pixel diffusion model and to work on uncompressed pixels, the input images must be smaller
* `--pre_compute_text_embeddings`, compute the text embeddings ahead of time to save memory because the [`~transformers.T5Model`] can take up a lot of memory
* `--tokenizer_max_length=77`, you can use a longer default text length with T5 as the text encoder but the default model encoding procedure uses a shorter text length
* `--text_encoder_use_attention_mask`, to pass the attention mask to the text encoder
<hfoptions id="IF-DreamBooth">
<hfoption id="Stage 1 LoRA DreamBooth">
Training stage 1 of DeepFloyd IF with LoRA and DreamBooth requires ~28GB of memory.
```bash
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_lora"
accelerate launch train_dreambooth_lora.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=64 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--scale_lr \
--max_train_steps=1200 \
--validation_prompt="a sks dog" \
--validation_epochs=25 \
--checkpointing_steps=100 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask
```
</hfoption>
<hfoption id="Stage 2 LoRA DreamBooth">
For stage 2 of DeepFloyd IF with LoRA and DreamBooth, pay attention to these parameters:
* `--validation_images`, the images to upscale during validation
* `--class_labels_conditioning=timesteps`, to additionally conditional the UNet as needed in stage 2
* `--learning_rate=1e-6`, a lower learning rate is used compared to stage 1
* `--resolution=256`, the expected resolution for the upscaler
```bash
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_upscale"
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
python train_dreambooth_lora.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=256 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-6 \
--max_train_steps=2000 \
--validation_prompt="a sks dog" \
--validation_epochs=100 \
--checkpointing_steps=500 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask \
--validation_images $VALIDATION_IMAGES \
--class_labels_conditioning=timesteps
```
</hfoption>
<hfoption id="Stage 1 DreamBooth">
For stage 1 of DeepFloyd IF with DreamBooth, pay attention to these parameters:
* `--skip_save_text_encoder`, to skip saving the full T5 text encoder with the finetuned model
* `--use_8bit_adam`, to use 8-bit Adam optimizer to save memory due to the size of the optimizer state when training the full model
* `--learning_rate=1e-7`, a really low learning rate should be used for full model training otherwise the model quality is degraded (you can use a higher learning rate with a larger batch size)
Training with 8-bit Adam and a batch size of 4, the full model can be trained with ~48GB of memory.
```bash
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_if"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=64 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-7 \
--max_train_steps=150 \
--validation_prompt "a photo of sks dog" \
--validation_steps 25 \
--text_encoder_use_attention_mask \
--tokenizer_max_length 77 \
--pre_compute_text_embeddings \
--use_8bit_adam \
--set_grads_to_none \
--skip_save_text_encoder \
--push_to_hub
```
</hfoption>
<hfoption id="Stage 2 DreamBooth">
For stage 2 of DeepFloyd IF with DreamBooth, pay attention to these parameters:
* `--learning_rate=5e-6`, use a lower learning rate with a smaller effective batch size
* `--resolution=256`, the expected resolution for the upscaler
* `--train_batch_size=2` and `--gradient_accumulation_steps=6`, to effectively train on images wiht faces requires larger batch sizes
```bash
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_upscale"
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
accelerate launch train_dreambooth.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=256 \
--train_batch_size=2 \
--gradient_accumulation_steps=6 \
--learning_rate=5e-6 \
--max_train_steps=2000 \
--validation_prompt="a sks dog" \
--validation_steps=150 \
--checkpointing_steps=500 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask \
--validation_images $VALIDATION_IMAGES \
--class_labels_conditioning timesteps \
--push_to_hub
```
</hfoption>
</hfoptions>
### Training tips
Training the DeepFloyd IF model can be challenging, but here are some tips that we've found helpful:
- LoRA is sufficient for training the stage 1 model because the model's low resolution makes representing finer details difficult regardless.
- For common or simple objects, you don't necessarily need to finetune the upscaler. Make sure the prompt passed to the upscaler is adjusted to remove the new token from the instance prompt. For example, if your stage 1 prompt is "a sks dog" then your stage 2 prompt should be "a dog".
- For finer details like faces, fully training the stage 2 upscaler is better than training the stage 2 model with LoRA. It also helps to use lower learning rates with larger batch sizes.
- Lower learning rates should be used to train the stage 2 model.
- The [`DDPMScheduler`] works better than the DPMSolver used in the training scripts.
## Next steps
Congratulations on training your DreamBooth model! To learn more about how to use your new model, the following guide may be helpful:
- Learn how to [load a DreamBooth](../using-diffusers/loading_adapters) model for inference if you trained your model with LoRA. |