File size: 16,465 Bytes
71e02e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717a45
71e02e7
 
 
 
 
 
2717a45
 
71e02e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352e0aa
 
 
 
71e02e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352e0aa
71e02e7
 
207863e
 
 
 
 
 
 
 
 
 
 
71e02e7
 
 
 
 
 
 
 
 
 
207863e
71e02e7
 
 
 
 
 
 
7c856a7
71e02e7
 
 
 
 
 
7c856a7
71e02e7
 
352e0aa
 
a8b8028
 
 
 
 
 
 
 
 
 
 
 
 
352e0aa
49dac03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867e309
49dac03
 
 
 
 
 
 
837cf75
49dac03
 
 
867e309
 
 
 
 
49dac03
 
 
 
 
 
 
 
 
 
 
 
 
837cf75
49dac03
 
 
 
 
 
867e309
 
 
 
 
49dac03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837cf75
49dac03
 
 
867e309
 
 
 
 
49dac03
 
 
867e309
 
49dac03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f7eda
f7cd162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f7eda
 
 
 
 
04ec535
 
80f7eda
f7cd162
71e02e7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

# AnimatedDiff ControlNet SDXL Example

This document provides a step-by-step guide to setting up and running the `animatediff_controlnet_sdxl.py` script from the Hugging Face repository. The script leverages the `diffusers-sdxl-controlnet` library to generate animated images using ControlNet and SDXL models.

## Prerequisites

Before running the script, ensure you have the necessary dependencies installed. You can install them using the following commands:

### System Dependencies

```bash
sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg
```

### Python Dependencies

```bash
pip install git+https://huggingface.co/svjack/diffusers-sdxl-controlnet
pip install transformers peft sentencepiece moviepy==1.0.3 controlnet_aux
```

### Clone the Repository

```bash
git clone https://huggingface.co/svjack/diffusers-sdxl-controlnet
cp diffusers-sdxl-controlnet/girl-pose.gif .
cp diffusers-sdxl-controlnet/girl_beach.mp4 . 
```

## Script Modifications

The script requires some modifications to work correctly. Specifically, you need to comment out certain lines related to LoRA processors:

```python
'''
drop     #LoRAAttnProcessor2_0,
    #LoRAXFormersAttnProcessor,
'''
```

## GIF to Frames Conversion

The script includes a function to convert a GIF into individual frames. This is useful for preparing input data for the animation pipeline.

```python
from PIL import Image, ImageSequence
import os

def gif_to_frames(gif_path, output_folder):
    # Open the GIF file
    gif = Image.open(gif_path)
    
    # Ensure the output folder exists
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    
    # Iterate through each frame of the GIF
    for i, frame in enumerate(ImageSequence.Iterator(gif)):
        # Copy the frame
        frame_copy = frame.copy()
        
        # Save the frame to the specified folder
        frame_path = os.path.join(output_folder, f"frame_{i:04d}.png")
        frame_copy.save(frame_path)
    
    print(f"Successfully extracted {i + 1} frames to {output_folder}")

# Example call
gif_to_frames("girl-pose.gif", "girl_pose_frames")
```

### Use this girl pose as pose source video (gif)

![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/6oTdxQtI0nLGq2YB4KYTh.gif)

## Running the Script

To run the script, follow these steps:

1. **Add the Script Path to System Path**:

    ```python
    import sys
    sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
    from animatediff_controlnet_sdxl import *
    from controlnet_aux.processor import Processor
    ```

2. **Load Necessary Libraries and Models**:

    ```python
    import torch
    from diffusers.models import MotionAdapter
    from diffusers import DDIMScheduler
    from diffusers.utils import export_to_gif
    from diffusers import AutoPipelineForText2Image, ControlNetModel
    from diffusers.utils import load_image
    from PIL import Image
    ```

3. **Load the MotionAdapter Model**:

    ```python
    adapter = MotionAdapter.from_pretrained(
        "a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", 
        torch_dtype=torch.float16
    )
    ```

4. **Configure the Scheduler and ControlNet**:

    ```python
    model_id = "svjack/GenshinImpact_XL_Base"
    scheduler = DDIMScheduler.from_pretrained(
        model_id,
        subfolder="scheduler",
        clip_sample=False,
        timestep_spacing="linspace",
        beta_schedule="linear",
        steps_offset=1,
    )

    controlnet = ControlNetModel.from_pretrained(
        "thibaud/controlnet-openpose-sdxl-1.0",
        torch_dtype=torch.float16,
    ).to("cuda")
    ```

5. **Load the AnimateDiffSDXLControlnetPipeline**:

    ```python
    pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
        model_id,
        controlnet=controlnet,
        motion_adapter=adapter,
        scheduler=scheduler,
        torch_dtype=torch.float16,
    ).to("cuda")
    ```

6. **Enable Memory Saving Features**:

    ```python
    pipe.enable_vae_slicing()
    pipe.enable_vae_tiling()
    ```

7. **Load Conditioning Frames**:

    ```python
    import os
    folder_path = "girl_pose_frames/"
    frames = os.listdir(folder_path)
    frames = list(filter(lambda x: x.endswith(".png"), frames))
    frames.sort()
    conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path ,x)).resize((1024, 1024)), frames))[:16]
    ```

8. **Process Conditioning Frames**:

    ```python
    p2 = Processor("openpose")
    cn2 = [p2(frame) for frame in conditioning_frames]
    ```

9. **Define Prompts**:

    ```python
    prompt = '''
    solo,Xiangling\(genshin impact\),1girl,
    full body professional photograph of a stunning detailed, sharp focus, dramatic 
    cinematic lighting, octane render  unreal engine (film grain, blurry background
    '''
    prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
    negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
    ```

10. **Generate Output**: (Use Genshin Impact character Xiangling)

    ```python
    prompt = '''
    solo,Xiangling\(genshin impact\),1girl,
    full body professional photograph of a stunning detailed, sharp focus, dramatic 
    cinematic lighting, octane render  unreal engine (film grain, blurry background
    '''
    prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed"
    
    #prompt = "solo,Xiangling\(genshin impact\),1girl"
    negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
    
    generator = torch.Generator(device="cpu").manual_seed(0)
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=50,
        guidance_scale=20,
        controlnet_conditioning_scale = 1.0,
        width=512,
        height=768,
        num_frames=16,
        conditioning_frames=cn2,
        generator = generator
    )
    ```

11. **Export Frames to GIF**:

    ```python
    frames = output.frames[0]
    export_to_gif(frames, "xiangling_animation.gif")
    ```

12. **Display the Result**:

    ```python
    from IPython import display
    display.Image("xiangling_animation.gif")
    ```

### Target gif 

<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
    <div style="margin-right: 10px;">
        <img src="xiangling_animation.gif" alt="Image 1" style="width: 512px; height: 768px;">
    </div>
</div>

### Use Anime Upscale in https://github.com/svjack/APISR

<div style="display: flex; justify-content: center; flex-wrap: nowrap;">
    <div style="margin-left: 10px;">
        <img src="xiangling_animation_frames_4x.gif" alt="Image 2" style="width: 512px; height: 768px;">
    </div>
</div>

### Run in Command line
- animatediff_controlnet_sdxl_run_script.py
```python
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *

import argparse
from moviepy.editor import VideoFileClip, ImageSequenceClip
import os
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import export_to_gif
from PIL import Image
from controlnet_aux.processor import Processor

# 初始化 MotionAdapter 和 ControlNetModel
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)

def initialize_pipeline(model_id):
    scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
    controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")

    # 初始化 AnimateDiffSDXLControlnetPipeline
    pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
        model_id,
        controlnet=controlnet,
        motion_adapter=adapter,
        scheduler=scheduler,
        torch_dtype=torch.float16,
    ).to("cuda")
    pipe.enable_vae_slicing()
    pipe.enable_vae_tiling()
    return pipe

def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
    """
    将视频处理成指定帧数的视频,并保持原始的帧率。

    :param input_video_path: 输入视频文件路径
    :param num_frames: 目标帧数
    :param temp_folder: 临时文件夹路径
    """
    clip = VideoFileClip(input_video_path)
    original_duration = clip.duration
    segment_duration = original_duration / num_frames

    if not os.path.exists(temp_folder):
        os.makedirs(temp_folder)

    for i in range(num_frames):
        frame_time = i * segment_duration
        frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
        clip.save_frame(frame_path, t=frame_time)

    frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
    final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
    final_clip.write_videofile("resampled_video.mp4", codec='libx264')

    print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")

def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames', num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=1.0, width=512, height=768):
    """
    生成带有文本提示的视频。

    :param input_video_path: 输入视频文件路径
    :param prompt: 文本提示
    :param model_id: 模型ID
    :param gif_output_path: GIF 输出文件路径
    :param seed: 随机种子
    :param num_frames: 目标帧数
    :param keep_imgs: 是否保留临时图片
    :param temp_folder: 临时文件夹路径
    :param num_inference_steps: 推理步数
    :param guidance_scale: 引导比例
    :param controlnet_conditioning_scale: ControlNet 条件比例
    :param width: 输出宽度
    :param height: 输出高度
    """
    split_video_into_frames(input_video_path, num_frames, temp_folder)

    folder_path = temp_folder
    frames = os.listdir(folder_path)
    frames = list(filter(lambda x: x.endswith(".png"), frames))
    frames.sort()
    conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]

    p2 = Processor("openpose")
    cn2 = [p2(frame) for frame in conditioning_frames]

    negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
    generator = torch.Generator(device="cuda").manual_seed(seed)

    pipe = initialize_pipeline(model_id)

    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        width=width,
        height=height,
        num_frames=num_frames,
        conditioning_frames=cn2,
        generator=generator
    )

    frames = output.frames[0]
    export_to_gif(frames, gif_output_path)

    print(f"生成的 GIF 已保存到 {gif_output_path}")

    if not keep_imgs:
        # 删除临时文件夹
        import shutil
        shutil.rmtree(temp_folder)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
    parser.add_argument("input_video", help="输入视频文件路径")
    parser.add_argument("prompt", help="文本提示")
    parser.add_argument("model_id", help="模型ID")
    parser.add_argument("gif_output_path", help="GIF 输出文件路径")
    parser.add_argument("--seed", type=int, default=0, help="随机种子")
    parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
    parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
    parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
    parser.add_argument("--num_inference_steps", type=int, default=50, help="推理步数")
    parser.add_argument("--guidance_scale", type=float, default=20.0, help="引导比例")
    parser.add_argument("--controlnet_conditioning_scale", type=float, default=1.0, help="ControlNet 条件比例")
    parser.add_argument("--width", type=int, default=512, help="输出宽度")
    parser.add_argument("--height", type=int, default=768, help="输出高度")

    args = parser.parse_args()

    generate_video_with_prompt(args.input_video, args.prompt, args.model_id, args.gif_output_path, args.seed, args.num_frames,
      args.keep_imgs, args.temp_folder, args.num_inference_steps, args.guidance_scale, args.controlnet_conditioning_scale, args.width, args.height)
```

```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
 "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed, drink tea use chinese cup" \
  "svjack/GenshinImpact_XL_Base" \
   xiangling_tea_animation.gif --num_frames 16 --temp_folder temp_frames
```
- Pose: girl_beach.mp4
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/pYx23VyLNkLk3YxAAqu5i.mp4"></video>
- Output: xiangling_tea_animation.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/qUZOvGs5rzxN8zaZ4Xp3s.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/uwUDYOPiZbHuq5v6jWADr.mp4"></video>

### Some Other Samples

#### Makise Kurisu in Steins Gate
```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
 "1girl, Makise Kurisu, masterpiece, white lab coat, red tie, laboratory" \
  "cagliostrolab/animagine-xl-3.1" \
   Makise_Kurisu_animation_short.gif --num_frames 16 --temp_folder temp_frames --guidance_scale 20 --controlnet_conditioning_scale 0.3
```
- Output: Makise_Kurisu_animation_short.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/WZu1raXfuaHlmrzTTOBbz.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/v69NuN5UsAokrfBNW_c9P.mp4"></video>

#### Souryuu Asuka Langley in EVA 
```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
 "1girl, souryuu asuka langley, masterpiece" \
  "cagliostrolab/animagine-xl-3.1" \
   asuka_langley_animation_short.gif --num_frames 16 --temp_folder temp_frames --guidance_scale 20 --controlnet_conditioning_scale 0.3 --num_inference_steps 50
```
- Output: asuka_langley_animation_short.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/wZVvYaYqpigXENEVJVGaM.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/uusv36dl0NT80fpUeo5pA.mp4"></video>

```bash
python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \
 "1girl, souryuu asuka langley, masterpiece, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night" \
  "cagliostrolab/animagine-xl-3.1" \
   asuka_langley_animation_long.gif --num_frames 16 --temp_folder temp_frames --guidance_scale 20 --controlnet_conditioning_scale 0.3
```
- Output: asuka_langley_animation_long.gif
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/qoLf2rKuGLnIW5liQg8tq.gif)
- Upscaled:
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/T2iREkPkWXWCjzOHmq82-.mp4"></video>

#### XiangLing in Genshin Impact
- produce_gif_script.py
```bash
python produce_gif_script.py xiangling_video_seed.csv "svjack/GenshinImpact_XL_Base" xiangling_gif_dir \
 --num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
```
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/R2SpiNASjQj8k_wrZDJA5.gif)
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ssJZD1SXLLu4EdpSZKcP2.gif)


## Conclusion

This script demonstrates how to use the `diffusers-sdxl-controlnet` library to generate animated images with ControlNet and SDXL models. By following the steps outlined above, you can create and visualize your own animated sequences.