File size: 14,101 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

from ..utils import is_peft_version, logging


logger = logging.get_logger(__name__)


def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5):
    # 1. get all state_dict_keys
    all_keys = list(state_dict.keys())
    sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

    # 2. check if needs remapping, if not return original dict
    is_in_sgm_format = False
    for key in all_keys:
        if any(p in key for p in sgm_patterns):
            is_in_sgm_format = True
            break

    if not is_in_sgm_format:
        return state_dict

    # 3. Else remap from SGM patterns
    new_state_dict = {}
    inner_block_map = ["resnets", "attentions", "upsamplers"]

    # Retrieves # of down, mid and up blocks
    input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()

    for layer in all_keys:
        if "text" in layer:
            new_state_dict[layer] = state_dict.pop(layer)
        else:
            layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
            if sgm_patterns[0] in layer:
                input_block_ids.add(layer_id)
            elif sgm_patterns[1] in layer:
                middle_block_ids.add(layer_id)
            elif sgm_patterns[2] in layer:
                output_block_ids.add(layer_id)
            else:
                raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")

    input_blocks = {
        layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
        for layer_id in input_block_ids
    }
    middle_blocks = {
        layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
        for layer_id in middle_block_ids
    }
    output_blocks = {
        layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
        for layer_id in output_block_ids
    }

    # Rename keys accordingly
    for i in input_block_ids:
        block_id = (i - 1) // (unet_config.layers_per_block + 1)
        layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

        for key in input_blocks[i]:
            inner_block_id = int(key.split(delimiter)[block_slice_pos])
            inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
            inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1]
                + [str(block_id), inner_block_key, inner_layers_in_block]
                + key.split(delimiter)[block_slice_pos + 1 :]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    for i in middle_block_ids:
        key_part = None
        if i == 0:
            key_part = [inner_block_map[0], "0"]
        elif i == 1:
            key_part = [inner_block_map[1], "0"]
        elif i == 2:
            key_part = [inner_block_map[0], "1"]
        else:
            raise ValueError(f"Invalid middle block id {i}.")

        for key in middle_blocks[i]:
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    for i in output_block_ids:
        block_id = i // (unet_config.layers_per_block + 1)
        layer_in_block_id = i % (unet_config.layers_per_block + 1)

        for key in output_blocks[i]:
            inner_block_id = int(key.split(delimiter)[block_slice_pos])
            inner_block_key = inner_block_map[inner_block_id]
            inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1]
                + [str(block_id), inner_block_key, inner_layers_in_block]
                + key.split(delimiter)[block_slice_pos + 1 :]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    if len(state_dict) > 0:
        raise ValueError("At this point all state dict entries have to be converted.")

    return new_state_dict


def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
    """
    Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.

    Args:
        state_dict (`dict`): The state dict to convert.
        unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
        text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
            "text_encoder".

    Returns:
        `tuple`: A tuple containing the converted state dict and a dictionary of alphas.
    """
    unet_state_dict = {}
    te_state_dict = {}
    te2_state_dict = {}
    network_alphas = {}

    # Check for DoRA-enabled LoRAs.
    if any(
        "dora_scale" in k and ("lora_unet_" in k or "lora_te_" in k or "lora_te1_" in k or "lora_te2_" in k)
        for k in state_dict
    ):
        if is_peft_version("<", "0.9.0"):
            raise ValueError(
                "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
            )

    # Iterate over all LoRA weights.
    all_lora_keys = list(state_dict.keys())
    for key in all_lora_keys:
        if not key.endswith("lora_down.weight"):
            continue

        # Extract LoRA name.
        lora_name = key.split(".")[0]

        # Find corresponding up weight and alpha.
        lora_name_up = lora_name + ".lora_up.weight"
        lora_name_alpha = lora_name + ".alpha"

        # Handle U-Net LoRAs.
        if lora_name.startswith("lora_unet_"):
            diffusers_name = _convert_unet_lora_key(key)

            # Store down and up weights.
            unet_state_dict[diffusers_name] = state_dict.pop(key)
            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Store DoRA scale if present.
            if "dora_scale" in state_dict:
                dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
                unet_state_dict[
                    diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")
                ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))

        # Handle text encoder LoRAs.
        elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
            diffusers_name = _convert_text_encoder_lora_key(key, lora_name)

            # Store down and up weights for te or te2.
            if lora_name.startswith(("lora_te_", "lora_te1_")):
                te_state_dict[diffusers_name] = state_dict.pop(key)
                te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
            else:
                te2_state_dict[diffusers_name] = state_dict.pop(key)
                te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Store DoRA scale if present.
            if "dora_scale" in state_dict:
                dora_scale_key_to_replace_te = (
                    "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
                )
                if lora_name.startswith(("lora_te_", "lora_te1_")):
                    te_state_dict[
                        diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
                    ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
                elif lora_name.startswith("lora_te2_"):
                    te2_state_dict[
                        diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
                    ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))

        # Store alpha if present.
        if lora_name_alpha in state_dict:
            alpha = state_dict.pop(lora_name_alpha).item()
            network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))

    # Check if any keys remain.
    if len(state_dict) > 0:
        raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")

    logger.info("Kohya-style checkpoint detected.")

    # Construct final state dict.
    unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
    te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
    te2_state_dict = (
        {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
        if len(te2_state_dict) > 0
        else None
    )
    if te2_state_dict is not None:
        te_state_dict.update(te2_state_dict)

    new_state_dict = {**unet_state_dict, **te_state_dict}
    return new_state_dict, network_alphas


def _convert_unet_lora_key(key):
    """
    Converts a U-Net LoRA key to a Diffusers compatible key.
    """
    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

    # Replace common U-Net naming patterns.
    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
    diffusers_name = diffusers_name.replace("proj.in", "proj_in")
    diffusers_name = diffusers_name.replace("proj.out", "proj_out")
    diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

    # SDXL specific conversions.
    if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
        pattern = r"\.\d+(?=\D*$)"
        diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
    if ".in." in diffusers_name:
        diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
    if ".out." in diffusers_name:
        diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
    if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
        diffusers_name = diffusers_name.replace("op", "conv")
    if "skip" in diffusers_name:
        diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

    # LyCORIS specific conversions.
    if "time.emb.proj" in diffusers_name:
        diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
    if "conv.shortcut" in diffusers_name:
        diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")

    # General conversions.
    if "transformer_blocks" in diffusers_name:
        if "attn1" in diffusers_name or "attn2" in diffusers_name:
            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
        elif "ff" in diffusers_name:
            pass
    elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
        pass
    else:
        pass

    return diffusers_name


def _convert_text_encoder_lora_key(key, lora_name):
    """
    Converts a text encoder LoRA key to a Diffusers compatible key.
    """
    if lora_name.startswith(("lora_te_", "lora_te1_")):
        key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
    else:
        key_to_replace = "lora_te2_"

    diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
    diffusers_name = diffusers_name.replace("text.model", "text_model")
    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
    diffusers_name = diffusers_name.replace("text.projection", "text_projection")

    if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
        pass
    elif "mlp" in diffusers_name:
        # Be aware that this is the new diffusers convention and the rest of the code might
        # not utilize it yet.
        diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
    return diffusers_name


def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
    """
    Gets the correct alpha name for the Diffusers model.
    """
    if lora_name_alpha.startswith("lora_unet_"):
        prefix = "unet."
    elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
        prefix = "text_encoder."
    else:
        prefix = "text_encoder_2."
    new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
    return {new_name: alpha}