File size: 31,942 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
import math
from functools import partial
from typing import Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .modeling_flax_utils import FlaxModelMixin
@flax.struct.dataclass
class FlaxDecoderOutput(BaseOutput):
"""
Output of decoding method.
Args:
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
The decoded output sample from the last layer of the model.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The `dtype` of the parameters.
"""
sample: jnp.ndarray
@flax.struct.dataclass
class FlaxAutoencoderKLOutput(BaseOutput):
"""
Output of AutoencoderKL encoding method.
Args:
latent_dist (`FlaxDiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`.
`FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution.
"""
latent_dist: "FlaxDiagonalGaussianDistribution"
class FlaxUpsample2D(nn.Module):
"""
Flax implementation of 2D Upsample layer
Args:
in_channels (`int`):
Input channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.in_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, hidden_states):
batch, height, width, channels = hidden_states.shape
hidden_states = jax.image.resize(
hidden_states,
shape=(batch, height * 2, width * 2, channels),
method="nearest",
)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxDownsample2D(nn.Module):
"""
Flax implementation of 2D Downsample layer
Args:
in_channels (`int`):
Input channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.in_channels,
kernel_size=(3, 3),
strides=(2, 2),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states):
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
hidden_states = jnp.pad(hidden_states, pad_width=pad)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxResnetBlock2D(nn.Module):
"""
Flax implementation of 2D Resnet Block.
Args:
in_channels (`int`):
Input channels
out_channels (`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for group norm.
use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`):
Whether to use `nin_shortcut`. This activates a new layer inside ResNet block
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int = None
dropout: float = 0.0
groups: int = 32
use_nin_shortcut: bool = None
dtype: jnp.dtype = jnp.float32
def setup(self):
out_channels = self.in_channels if self.out_channels is None else self.out_channels
self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
self.conv1 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
self.dropout_layer = nn.Dropout(self.dropout)
self.conv2 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
self.conv_shortcut = None
if use_nin_shortcut:
self.conv_shortcut = nn.Conv(
out_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states, deterministic=True):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
return hidden_states + residual
class FlaxAttentionBlock(nn.Module):
r"""
Flax Convolutional based multi-head attention block for diffusion-based VAE.
Parameters:
channels (:obj:`int`):
Input channels
num_head_channels (:obj:`int`, *optional*, defaults to `None`):
Number of attention heads
num_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for group norm
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
channels: int
num_head_channels: int = None
num_groups: int = 32
dtype: jnp.dtype = jnp.float32
def setup(self):
self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1
dense = partial(nn.Dense, self.channels, dtype=self.dtype)
self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6)
self.query, self.key, self.value = dense(), dense(), dense()
self.proj_attn = dense()
def transpose_for_scores(self, projection):
new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
new_projection = projection.reshape(new_projection_shape)
# (B, T, H, D) -> (B, H, T, D)
new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
return new_projection
def __call__(self, hidden_states):
residual = hidden_states
batch, height, width, channels = hidden_states.shape
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.reshape((batch, height * width, channels))
query = self.query(hidden_states)
key = self.key(hidden_states)
value = self.value(hidden_states)
# transpose
query = self.transpose_for_scores(query)
key = self.transpose_for_scores(key)
value = self.transpose_for_scores(value)
# compute attentions
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
attn_weights = nn.softmax(attn_weights, axis=-1)
# attend to values
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
hidden_states = hidden_states.reshape(new_hidden_states_shape)
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.reshape((batch, height, width, channels))
hidden_states = hidden_states + residual
return hidden_states
class FlaxDownEncoderBlock2D(nn.Module):
r"""
Flax Resnet blocks-based Encoder block for diffusion-based VAE.
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet block group norm
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add downsample layer
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
add_downsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout=self.dropout,
groups=self.resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_downsample:
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
for resnet in self.resnets:
hidden_states = resnet(hidden_states, deterministic=deterministic)
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
return hidden_states
class FlaxUpDecoderBlock2D(nn.Module):
r"""
Flax Resnet blocks-based Decoder block for diffusion-based VAE.
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet block group norm
add_upsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add upsample layer
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
add_upsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout=self.dropout,
groups=self.resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_upsample:
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
for resnet in self.resnets:
hidden_states = resnet(hidden_states, deterministic=deterministic)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states
class FlaxUNetMidBlock2D(nn.Module):
r"""
Flax Unet Mid-Block module.
Parameters:
in_channels (:obj:`int`):
Input channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet and Attention block group norm
num_attention_heads (:obj:`int`, *optional*, defaults to `1`):
Number of attention heads for each attention block
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
num_attention_heads: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32)
# there is always at least one resnet
resnets = [
FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout=self.dropout,
groups=resnet_groups,
dtype=self.dtype,
)
]
attentions = []
for _ in range(self.num_layers):
attn_block = FlaxAttentionBlock(
channels=self.in_channels,
num_head_channels=self.num_attention_heads,
num_groups=resnet_groups,
dtype=self.dtype,
)
attentions.append(attn_block)
res_block = FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout=self.dropout,
groups=resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
self.attentions = attentions
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states)
hidden_states = resnet(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxEncoder(nn.Module):
r"""
Flax Implementation of VAE Encoder.
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (:obj:`int`, *optional*, defaults to 3):
Input channels
out_channels (:obj:`int`, *optional*, defaults to 3):
Output channels
down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
DownEncoder block type
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple containing the number of output channels for each block
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
Number of Resnet layer for each block
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
norm num group
act_fn (:obj:`str`, *optional*, defaults to `silu`):
Activation function
double_z (:obj:`bool`, *optional*, defaults to `False`):
Whether to double the last output channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int = 3
out_channels: int = 3
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
block_out_channels: Tuple[int] = (64,)
layers_per_block: int = 2
norm_num_groups: int = 32
act_fn: str = "silu"
double_z: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
block_out_channels = self.block_out_channels
# in
self.conv_in = nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# downsampling
down_blocks = []
output_channel = block_out_channels[0]
for i, _ in enumerate(self.down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = FlaxDownEncoderBlock2D(
in_channels=input_channel,
out_channels=output_channel,
num_layers=self.layers_per_block,
resnet_groups=self.norm_num_groups,
add_downsample=not is_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
self.down_blocks = down_blocks
# middle
self.mid_block = FlaxUNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_groups=self.norm_num_groups,
num_attention_heads=None,
dtype=self.dtype,
)
# end
conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
self.conv_out = nn.Conv(
conv_out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, sample, deterministic: bool = True):
# in
sample = self.conv_in(sample)
# downsampling
for block in self.down_blocks:
sample = block(sample, deterministic=deterministic)
# middle
sample = self.mid_block(sample, deterministic=deterministic)
# end
sample = self.conv_norm_out(sample)
sample = nn.swish(sample)
sample = self.conv_out(sample)
return sample
class FlaxDecoder(nn.Module):
r"""
Flax Implementation of VAE Decoder.
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (:obj:`int`, *optional*, defaults to 3):
Input channels
out_channels (:obj:`int`, *optional*, defaults to 3):
Output channels
up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
UpDecoder block type
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple containing the number of output channels for each block
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
Number of Resnet layer for each block
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
norm num group
act_fn (:obj:`str`, *optional*, defaults to `silu`):
Activation function
double_z (:obj:`bool`, *optional*, defaults to `False`):
Whether to double the last output channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
parameters `dtype`
"""
in_channels: int = 3
out_channels: int = 3
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
block_out_channels: int = (64,)
layers_per_block: int = 2
norm_num_groups: int = 32
act_fn: str = "silu"
dtype: jnp.dtype = jnp.float32
def setup(self):
block_out_channels = self.block_out_channels
# z to block_in
self.conv_in = nn.Conv(
block_out_channels[-1],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# middle
self.mid_block = FlaxUNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_groups=self.norm_num_groups,
num_attention_heads=None,
dtype=self.dtype,
)
# upsampling
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
up_blocks = []
for i, _ in enumerate(self.up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = FlaxUpDecoderBlock2D(
in_channels=prev_output_channel,
out_channels=output_channel,
num_layers=self.layers_per_block + 1,
resnet_groups=self.norm_num_groups,
add_upsample=not is_final_block,
dtype=self.dtype,
)
up_blocks.append(up_block)
prev_output_channel = output_channel
self.up_blocks = up_blocks
# end
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
self.conv_out = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, sample, deterministic: bool = True):
# z to block_in
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample, deterministic=deterministic)
# upsampling
for block in self.up_blocks:
sample = block(sample, deterministic=deterministic)
sample = self.conv_norm_out(sample)
sample = nn.swish(sample)
sample = self.conv_out(sample)
return sample
class FlaxDiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
# Last axis to account for channels-last
self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = jnp.exp(0.5 * self.logvar)
self.var = jnp.exp(self.logvar)
if self.deterministic:
self.var = self.std = jnp.zeros_like(self.mean)
def sample(self, key):
return self.mean + self.std * jax.random.normal(key, self.mean.shape)
def kl(self, other=None):
if self.deterministic:
return jnp.array([0.0])
if other is None:
return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])
return 0.5 * jnp.sum(
jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
axis=[1, 2, 3],
)
def nll(self, sample, axis=[1, 2, 3]):
if self.deterministic:
return jnp.array([0.0])
logtwopi = jnp.log(2.0 * jnp.pi)
return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)
def mode(self):
return self.mean
@flax_register_to_config
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
Flax implementation of a VAE model with KL loss for decoding latent representations.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
implemented for all models (such as downloading or saving).
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matter related to its
general usage and behavior.
Inherent JAX features such as the following are supported:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
out_channels (`int`, *optional*, defaults to 3):
Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
Tuple of upsample block types.
block_out_channels (`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `2`):
Number of ResNet layer for each block.
act_fn (`str`, *optional*, defaults to `silu`):
The activation function to use.
latent_channels (`int`, *optional*, defaults to `4`):
Number of channels in the latent space.
norm_num_groups (`int`, *optional*, defaults to `32`):
The number of groups for normalization.
sample_size (`int`, *optional*, defaults to 32):
Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The `dtype` of the parameters.
"""
in_channels: int = 3
out_channels: int = 3
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
block_out_channels: Tuple[int] = (64,)
layers_per_block: int = 1
act_fn: str = "silu"
latent_channels: int = 4
norm_num_groups: int = 32
sample_size: int = 32
scaling_factor: float = 0.18215
dtype: jnp.dtype = jnp.float32
def setup(self):
self.encoder = FlaxEncoder(
in_channels=self.config.in_channels,
out_channels=self.config.latent_channels,
down_block_types=self.config.down_block_types,
block_out_channels=self.config.block_out_channels,
layers_per_block=self.config.layers_per_block,
act_fn=self.config.act_fn,
norm_num_groups=self.config.norm_num_groups,
double_z=True,
dtype=self.dtype,
)
self.decoder = FlaxDecoder(
in_channels=self.config.latent_channels,
out_channels=self.config.out_channels,
up_block_types=self.config.up_block_types,
block_out_channels=self.config.block_out_channels,
layers_per_block=self.config.layers_per_block,
norm_num_groups=self.config.norm_num_groups,
act_fn=self.config.act_fn,
dtype=self.dtype,
)
self.quant_conv = nn.Conv(
2 * self.config.latent_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.post_quant_conv = nn.Conv(
self.config.latent_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def init_weights(self, rng: jax.Array) -> FrozenDict:
# init input tensors
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}
return self.init(rngs, sample)["params"]
def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
sample = jnp.transpose(sample, (0, 2, 3, 1))
hidden_states = self.encoder(sample, deterministic=deterministic)
moments = self.quant_conv(hidden_states)
posterior = FlaxDiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return FlaxAutoencoderKLOutput(latent_dist=posterior)
def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
if latents.shape[-1] != self.config.latent_channels:
latents = jnp.transpose(latents, (0, 2, 3, 1))
hidden_states = self.post_quant_conv(latents)
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))
if not return_dict:
return (hidden_states,)
return FlaxDecoderOutput(sample=hidden_states)
def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
if sample_posterior:
rng = self.make_rng("gaussian")
hidden_states = posterior.latent_dist.sample(rng)
else:
hidden_states = posterior.latent_dist.mode()
sample = self.decode(hidden_states, return_dict=return_dict).sample
if not return_dict:
return (sample,)
return FlaxDecoderOutput(sample=sample)
|