File size: 2,454 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch

from diffusers import SD3Transformer2DModel
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    torch_device,
)

from ..test_modeling_common import ModelTesterMixin


enable_full_determinism()


class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
    model_class = SD3Transformer2DModel
    main_input_name = "hidden_states"

    @property
    def dummy_input(self):
        batch_size = 2
        num_channels = 4
        height = width = embedding_dim = 32
        pooled_embedding_dim = embedding_dim * 2
        sequence_length = 154

        hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
        encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
        pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
        timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)

        return {
            "hidden_states": hidden_states,
            "encoder_hidden_states": encoder_hidden_states,
            "pooled_projections": pooled_prompt_embeds,
            "timestep": timestep,
        }

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "patch_size": 1,
            "in_channels": 4,
            "num_layers": 1,
            "attention_head_dim": 8,
            "num_attention_heads": 4,
            "caption_projection_dim": 32,
            "joint_attention_dim": 32,
            "pooled_projection_dim": 64,
            "out_channels": 4,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict