File size: 6,435 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig
from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import enable_full_determinism
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BlipDiffusionPipeline
params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
batch_params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"neg_prompt",
"guidance_scale",
"prompt_strength",
"prompt_reps",
]
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
vocab_size=1000,
hidden_size=8,
intermediate_size=8,
projection_dim=8,
num_hidden_layers=1,
num_attention_heads=1,
max_position_embeddings=77,
)
text_encoder = ContextCLIPTextModel(text_encoder_config)
vae = AutoencoderKL(
in_channels=4,
out_channels=4,
down_block_types=("DownEncoderBlock2D",),
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(8,),
norm_num_groups=8,
layers_per_block=1,
act_fn="silu",
latent_channels=4,
sample_size=8,
)
blip_vision_config = {
"hidden_size": 8,
"intermediate_size": 8,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"image_size": 224,
"patch_size": 14,
"hidden_act": "quick_gelu",
}
blip_qformer_config = {
"vocab_size": 1000,
"hidden_size": 8,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"intermediate_size": 8,
"max_position_embeddings": 512,
"cross_attention_frequency": 1,
"encoder_hidden_size": 8,
}
qformer_config = Blip2Config(
vision_config=blip_vision_config,
qformer_config=blip_qformer_config,
num_query_tokens=8,
tokenizer="hf-internal-testing/tiny-random-bert",
)
qformer = Blip2QFormerModel(qformer_config)
unet = UNet2DConditionModel(
block_out_channels=(8, 16),
norm_num_groups=8,
layers_per_block=1,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=8,
)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
scheduler = PNDMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
skip_prk_steps=True,
)
vae.eval()
qformer.eval()
text_encoder.eval()
image_processor = BlipImageProcessor()
components = {
"text_encoder": text_encoder,
"vae": vae,
"qformer": qformer,
"unet": unet,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
np.random.seed(seed)
reference_image = np.random.rand(32, 32, 3) * 255
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "swimming underwater",
"generator": generator,
"reference_image": reference_image,
"source_subject_category": "dog",
"target_subject_category": "dog",
"height": 32,
"width": 32,
"guidance_scale": 7.5,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_blipdiffusion(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
image = pipe(**self.get_dummy_inputs(device))[0]
image_slice = image[0, -3:, -3:, 0]
assert image.shape == (1, 16, 16, 4)
expected_slice = np.array(
[0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}"
|