File size: 5,474 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device

from ..pipeline_params import (
    CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
    CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DiTPipeline
    params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "latents",
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = DiTTransformer2DModel(
            sample_size=16,
            num_layers=2,
            patch_size=4,
            attention_head_dim=8,
            num_attention_heads=2,
            in_channels=4,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_zero",
            norm_elementwise_affine=False,
        )
        vae = AutoencoderKL()
        scheduler = DDIMScheduler()
        components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "class_labels": [1],
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 16, 16, 3))
        expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457])
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)


@nightly
@require_torch_gpu
class DiTPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dit_256(self):
        generator = torch.manual_seed(0)

        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256")
        pipe.to("cuda")

        words = ["vase", "umbrella", "white shark", "white wolf"]
        ids = pipe.get_label_ids(words)

        images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy"
            )
            assert np.abs((expected_image - image).max()) < 1e-2

    def test_dit_512(self):
        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512")
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        words = ["vase", "umbrella"]
        ids = pipe.get_label_ids(words)

        generator = torch.manual_seed(0)
        images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/dit/{word}_512.npy"
            )

            assert np.abs((expected_image - image).max()) < 1e-1