File size: 6,832 Bytes
43b7e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch

from diffusers import TCDScheduler

from .test_schedulers import SchedulerCommonTest


class TCDSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (TCDScheduler,)
    forward_default_kwargs = (("num_inference_steps", 10),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.00085,
            "beta_end": 0.0120,
            "beta_schedule": "scaled_linear",
            "prediction_type": "epsilon",
        }

        config.update(**kwargs)
        return config

    @property
    def default_num_inference_steps(self):
        return 10

    @property
    def default_valid_timestep(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        scheduler_config = self.get_scheduler_config()
        scheduler = self.scheduler_classes[0](**scheduler_config)

        scheduler.set_timesteps(num_inference_steps)
        timestep = scheduler.timesteps[-1]
        return timestep

    def test_timesteps(self):
        for timesteps in [100, 500, 1000]:
            # 0 is not guaranteed to be in the timestep schedule, but timesteps - 1 is
            self.check_over_configs(time_step=timesteps - 1, num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(time_step=self.default_valid_timestep, beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear", "squaredcos_cap_v2"]:
            self.check_over_configs(time_step=self.default_valid_timestep, beta_schedule=schedule)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(time_step=self.default_valid_timestep, prediction_type=prediction_type)

    def test_clip_sample(self):
        for clip_sample in [True, False]:
            self.check_over_configs(time_step=self.default_valid_timestep, clip_sample=clip_sample)

    def test_thresholding(self):
        self.check_over_configs(time_step=self.default_valid_timestep, thresholding=False)
        for threshold in [0.5, 1.0, 2.0]:
            for prediction_type in ["epsilon", "v_prediction"]:
                self.check_over_configs(
                    time_step=self.default_valid_timestep,
                    thresholding=True,
                    prediction_type=prediction_type,
                    sample_max_value=threshold,
                )

    def test_time_indices(self):
        # Get default timestep schedule.
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        scheduler_config = self.get_scheduler_config()
        scheduler = self.scheduler_classes[0](**scheduler_config)

        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps
        for t in timesteps:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        # Hardcoded for now
        for t, num_inference_steps in zip([99, 39, 39, 19], [10, 25, 26, 50]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

    def full_loop(self, num_inference_steps=10, seed=0, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        eta = 0.0  # refer to gamma in the paper

        model = self.dummy_model()
        sample = self.dummy_sample_deter
        generator = torch.manual_seed(seed)
        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta, generator).prev_sample

        return sample

    def test_full_loop_onestep_deter(self):
        sample = self.full_loop(num_inference_steps=1)

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 29.8715) < 1e-3  # 0.0778918
        assert abs(result_mean.item() - 0.0389) < 1e-3

    def test_full_loop_multistep_deter(self):
        sample = self.full_loop(num_inference_steps=10)

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 181.2040) < 1e-3
        assert abs(result_mean.item() - 0.2359) < 1e-3

    def test_custom_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 1, 0]

        scheduler.set_timesteps(timesteps=timesteps)

        scheduler_timesteps = scheduler.timesteps

        for i, timestep in enumerate(scheduler_timesteps):
            if i == len(timesteps) - 1:
                expected_prev_t = -1
            else:
                expected_prev_t = timesteps[i + 1]

            prev_t = scheduler.previous_timestep(timestep)
            prev_t = prev_t.item()

            self.assertEqual(prev_t, expected_prev_t)

    def test_custom_timesteps_increasing_order(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 51, 0]

        with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."):
            scheduler.set_timesteps(timesteps=timesteps)

    def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 1, 0]
        num_inference_steps = len(timesteps)

        with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
            scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)

    def test_custom_timesteps_too_large(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [scheduler.config.num_train_timesteps]

        with self.assertRaises(
            ValueError,
            msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
        ):
            scheduler.set_timesteps(timesteps=timesteps)