File size: 4,530 Bytes
43b7e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from diffusers import StableCascadeUNet
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
)
logger = logging.get_logger(__name__)
enable_full_determinism()
@slow
@require_torch_gpu
class StableCascadeUNetSingleFileTest(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_single_file_components_stage_b(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert (
model.config[param_name] == param_value
), f"{param_name} differs between single file loading and pretrained loading"
def test_single_file_components_stage_b_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert (
model.config[param_name] == param_value
), f"{param_name} differs between single file loading and pretrained loading"
def test_single_file_components_stage_c(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert (
model.config[param_name] == param_value
), f"{param_name} differs between single file loading and pretrained loading"
def test_single_file_components_stage_c_lite(self):
model_single_file = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors",
torch_dtype=torch.bfloat16,
)
model = StableCascadeUNet.from_pretrained(
"stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite"
)
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert (
model.config[param_name] == param_value
), f"{param_name} differs between single file loading and pretrained loading"
|