|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
import warnings |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
from urllib.parse import urlparse |
|
|
|
import accelerate |
|
import datasets |
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_instruct_pix2pix import ( |
|
StableDiffusionXLInstructPix2PixPipeline, |
|
) |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
DATASET_NAME_MAPPING = { |
|
"fusing/instructpix2pix-1000-samples": ("file_name", "edited_image", "edit_prompt"), |
|
} |
|
WANDB_TABLE_COL_NAMES = ["file_name", "edited_image", "edit_prompt"] |
|
TORCH_DTYPE_MAPPING = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16} |
|
|
|
|
|
def log_validation(pipeline, args, accelerator, generator, global_step, is_final_validation=False): |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
val_save_dir = os.path.join(args.output_dir, "validation_images") |
|
if not os.path.exists(val_save_dir): |
|
os.makedirs(val_save_dir) |
|
|
|
original_image = ( |
|
lambda image_url_or_path: load_image(image_url_or_path) |
|
if urlparse(image_url_or_path).scheme |
|
else Image.open(image_url_or_path).convert("RGB") |
|
)(args.val_image_url_or_path) |
|
|
|
if torch.backends.mps.is_available(): |
|
autocast_ctx = nullcontext() |
|
else: |
|
autocast_ctx = torch.autocast(accelerator.device.type) |
|
|
|
with autocast_ctx: |
|
edited_images = [] |
|
|
|
for val_img_idx in range(args.num_validation_images): |
|
a_val_img = pipeline( |
|
args.validation_prompt, |
|
image=original_image, |
|
num_inference_steps=20, |
|
image_guidance_scale=1.5, |
|
guidance_scale=7, |
|
generator=generator, |
|
).images[0] |
|
edited_images.append(a_val_img) |
|
|
|
a_val_img.save(os.path.join(val_save_dir, f"step_{global_step}_val_img_{val_img_idx}.png")) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "wandb": |
|
wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) |
|
for edited_image in edited_images: |
|
wandb_table.add_data(wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt) |
|
logger_name = "test" if is_final_validation else "validation" |
|
tracker.log({logger_name: wandb_table}) |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Script to train Stable Diffusion XL for InstructPix2Pix.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--vae_precision", |
|
type=str, |
|
choices=["fp32", "fp16", "bf16"], |
|
default="fp32", |
|
help=( |
|
"The vanilla SDXL 1.0 VAE can cause NaNs due to large activation values. Some custom models might already have a solution" |
|
" to this problem, and this flag allows you to use mixed precision to stabilize training." |
|
), |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--original_image_column", |
|
type=str, |
|
default="input_image", |
|
help="The column of the dataset containing the original image on which edits where made.", |
|
) |
|
parser.add_argument( |
|
"--edited_image_column", |
|
type=str, |
|
default="edited_image", |
|
help="The column of the dataset containing the edited image.", |
|
) |
|
parser.add_argument( |
|
"--edit_prompt_column", |
|
type=str, |
|
default="edit_prompt", |
|
help="The column of the dataset containing the edit instruction.", |
|
) |
|
parser.add_argument( |
|
"--val_image_url_or_path", |
|
type=str, |
|
default=None, |
|
help="URL to the original image that you would like to edit (used during inference for debugging purposes).", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run fine-tuning validation every X steps. The validation process consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="instruct-pix2pix-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=256, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this resolution." |
|
), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_h", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_w", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--conditioning_dropout_prob", |
|
type=float, |
|
default=None, |
|
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") |
|
parser.add_argument( |
|
"--non_ema_revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help=( |
|
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" |
|
" remote repository specified with --pretrained_model_name_or_path." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
|
|
|
|
if args.non_ema_revision is None: |
|
args.non_ema_revision = args.revision |
|
|
|
return args |
|
|
|
|
|
def convert_to_np(image, resolution): |
|
if isinstance(image, str): |
|
image = PIL.Image.open(image) |
|
image = image.convert("RGB").resize((resolution, resolution)) |
|
return np.array(image).transpose(2, 0, 1) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
if args.non_ema_revision is not None: |
|
deprecate( |
|
"non_ema_revision!=None", |
|
"0.15.0", |
|
message=( |
|
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" |
|
" use `--variant=non_ema` instead." |
|
), |
|
) |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Initializing the XL InstructPix2Pix UNet from the pretrained UNet.") |
|
in_channels = 8 |
|
out_channels = unet.conv_in.out_channels |
|
unet.register_to_config(in_channels=in_channels) |
|
|
|
with torch.no_grad(): |
|
new_conv_in = nn.Conv2d( |
|
in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding |
|
) |
|
new_conv_in.weight.zero_() |
|
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) |
|
unet.conv_in = new_conv_in |
|
|
|
|
|
if args.use_ema: |
|
ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) |
|
|
|
for i, model in enumerate(models): |
|
model.save_pretrained(os.path.join(output_dir, "unet")) |
|
|
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
if args.use_ema: |
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) |
|
ema_unet.load_state_dict(load_model.state_dict()) |
|
ema_unet.to(accelerator.device) |
|
del load_model |
|
|
|
for i in range(len(models)): |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
optimizer = optimizer_cls( |
|
unet.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
) |
|
else: |
|
data_files = {} |
|
if args.train_data_dir is not None: |
|
data_files["train"] = os.path.join(args.train_data_dir, "**") |
|
dataset = load_dataset( |
|
"imagefolder", |
|
data_files=data_files, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) |
|
if args.original_image_column is None: |
|
original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
original_image_column = args.original_image_column |
|
if original_image_column not in column_names: |
|
raise ValueError( |
|
f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if args.edit_prompt_column is None: |
|
edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
edit_prompt_column = args.edit_prompt_column |
|
if edit_prompt_column not in column_names: |
|
raise ValueError( |
|
f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if args.edited_image_column is None: |
|
edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] |
|
else: |
|
edited_image_column = args.edited_image_column |
|
if edited_image_column not in column_names: |
|
raise ValueError( |
|
f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
warnings.warn(f"weight_dtype {weight_dtype} may cause nan during vae encoding", UserWarning) |
|
|
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
warnings.warn(f"weight_dtype {weight_dtype} may cause nan during vae encoding", UserWarning) |
|
|
|
|
|
|
|
def tokenize_captions(captions, tokenizer): |
|
inputs = tokenizer( |
|
captions, |
|
max_length=tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
return inputs.input_ids |
|
|
|
|
|
train_transforms = transforms.Compose( |
|
[ |
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), |
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), |
|
] |
|
) |
|
|
|
def preprocess_images(examples): |
|
original_images = np.concatenate( |
|
[convert_to_np(image, args.resolution) for image in examples[original_image_column]] |
|
) |
|
edited_images = np.concatenate( |
|
[convert_to_np(image, args.resolution) for image in examples[edited_image_column]] |
|
) |
|
|
|
|
|
images = np.concatenate([original_images, edited_images]) |
|
images = torch.tensor(images) |
|
images = 2 * (images / 255) - 1 |
|
return train_transforms(images) |
|
|
|
|
|
tokenizer_1 = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
tokenizer_2 = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
text_encoder_cls_1 = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
text_encoder_cls_2 = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder_1 = text_encoder_cls_1.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
text_encoder_2 = text_encoder_cls_2.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant |
|
) |
|
|
|
|
|
|
|
text_encoder_1.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_2.to(accelerator.device, dtype=weight_dtype) |
|
tokenizers = [tokenizer_1, tokenizer_2] |
|
text_encoders = [text_encoder_1, text_encoder_2] |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder_1.requires_grad_(False) |
|
text_encoder_2.requires_grad_(False) |
|
|
|
|
|
unet.train() |
|
|
|
|
|
def encode_prompt(text_encoders, tokenizers, prompt): |
|
prompt_embeds_list = [] |
|
|
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def encode_prompts(text_encoders, tokenizers, prompts): |
|
prompt_embeds_all = [] |
|
pooled_prompt_embeds_all = [] |
|
|
|
for prompt in prompts: |
|
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) |
|
prompt_embeds_all.append(prompt_embeds) |
|
pooled_prompt_embeds_all.append(pooled_prompt_embeds) |
|
|
|
return torch.stack(prompt_embeds_all), torch.stack(pooled_prompt_embeds_all) |
|
|
|
|
|
|
|
|
|
def compute_embeddings_for_prompts(prompts, text_encoders, tokenizers): |
|
with torch.no_grad(): |
|
prompt_embeds_all, pooled_prompt_embeds_all = encode_prompts(text_encoders, tokenizers, prompts) |
|
add_text_embeds_all = pooled_prompt_embeds_all |
|
|
|
prompt_embeds_all = prompt_embeds_all.to(accelerator.device) |
|
add_text_embeds_all = add_text_embeds_all.to(accelerator.device) |
|
return prompt_embeds_all, add_text_embeds_all |
|
|
|
|
|
def compute_null_conditioning(): |
|
null_conditioning_list = [] |
|
for a_tokenizer, a_text_encoder in zip(tokenizers, text_encoders): |
|
null_conditioning_list.append( |
|
a_text_encoder( |
|
tokenize_captions([""], tokenizer=a_tokenizer).to(accelerator.device), |
|
output_hidden_states=True, |
|
).hidden_states[-2] |
|
) |
|
return torch.concat(null_conditioning_list, dim=-1) |
|
|
|
null_conditioning = compute_null_conditioning() |
|
|
|
def compute_time_ids(): |
|
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w) |
|
original_size = target_size = (args.resolution, args.resolution) |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids], dtype=weight_dtype) |
|
return add_time_ids.to(accelerator.device).repeat(args.train_batch_size, 1) |
|
|
|
add_time_ids = compute_time_ids() |
|
|
|
def preprocess_train(examples): |
|
|
|
preprocessed_images = preprocess_images(examples) |
|
|
|
|
|
|
|
original_images, edited_images = preprocessed_images.chunk(2) |
|
original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) |
|
edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) |
|
|
|
|
|
examples["original_pixel_values"] = original_images |
|
examples["edited_pixel_values"] = edited_images |
|
|
|
|
|
captions = list(examples[edit_prompt_column]) |
|
prompt_embeds_all, add_text_embeds_all = compute_embeddings_for_prompts(captions, text_encoders, tokenizers) |
|
examples["prompt_embeds"] = prompt_embeds_all |
|
examples["add_text_embeds"] = add_text_embeds_all |
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
def collate_fn(examples): |
|
original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) |
|
original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() |
|
edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) |
|
edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() |
|
prompt_embeds = torch.concat([example["prompt_embeds"] for example in examples], dim=0) |
|
add_text_embeds = torch.concat([example["add_text_embeds"] for example in examples], dim=0) |
|
return { |
|
"original_pixel_values": original_pixel_values, |
|
"edited_pixel_values": edited_pixel_values, |
|
"prompt_embeds": prompt_embeds, |
|
"add_text_embeds": add_text_embeds, |
|
} |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
if args.use_ema: |
|
ema_unet.to(accelerator.device) |
|
|
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
else: |
|
vae.to(accelerator.device, dtype=TORCH_DTYPE_MAPPING[args.vae_precision]) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("instruct-pix2pix-xl", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
train_loss = 0.0 |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
edited_pixel_values = batch["edited_pixel_values"].to(dtype=weight_dtype) |
|
else: |
|
edited_pixel_values = batch["edited_pixel_values"] |
|
latents = vae.encode(edited_pixel_values).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
latents = latents.to(weight_dtype) |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = batch["prompt_embeds"] |
|
add_text_embeds = batch["add_text_embeds"] |
|
|
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
original_pixel_values = batch["original_pixel_values"].to(dtype=weight_dtype) |
|
else: |
|
original_pixel_values = batch["original_pixel_values"] |
|
original_image_embeds = vae.encode(original_pixel_values).latent_dist.sample() |
|
if args.pretrained_vae_model_name_or_path is None: |
|
original_image_embeds = original_image_embeds.to(weight_dtype) |
|
|
|
|
|
|
|
if args.conditioning_dropout_prob is not None: |
|
random_p = torch.rand(bsz, device=latents.device, generator=generator) |
|
|
|
prompt_mask = random_p < 2 * args.conditioning_dropout_prob |
|
prompt_mask = prompt_mask.reshape(bsz, 1, 1) |
|
|
|
encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) |
|
|
|
|
|
image_mask_dtype = original_image_embeds.dtype |
|
image_mask = 1 - ( |
|
(random_p >= args.conditioning_dropout_prob).to(image_mask_dtype) |
|
* (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype) |
|
) |
|
image_mask = image_mask.reshape(bsz, 1, 1, 1) |
|
|
|
original_image_embeds = image_mask * original_image_embeds |
|
|
|
|
|
concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1) |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
model_pred = unet( |
|
concatenated_noisy_latents, |
|
timesteps, |
|
encoder_hidden_states, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
train_loss += avg_loss.item() / args.gradient_accumulation_steps |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
if args.use_ema: |
|
ema_unet.step(unet.parameters()) |
|
progress_bar.update(1) |
|
global_step += 1 |
|
accelerator.log({"train_loss": train_loss}, step=global_step) |
|
train_loss = 0.0 |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
|
|
if global_step % args.validation_steps == 0: |
|
if (args.val_image_url_or_path is not None) and (args.validation_prompt is not None): |
|
|
|
if args.use_ema: |
|
|
|
ema_unet.store(unet.parameters()) |
|
ema_unet.copy_to(unet.parameters()) |
|
|
|
|
|
pipeline = StableDiffusionXLInstructPix2PixPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unwrap_model(unet), |
|
text_encoder=text_encoder_1, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer_1, |
|
tokenizer_2=tokenizer_2, |
|
vae=vae, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
log_validation( |
|
pipeline, |
|
args, |
|
accelerator, |
|
generator, |
|
global_step, |
|
is_final_validation=False, |
|
) |
|
|
|
if args.use_ema: |
|
|
|
ema_unet.restore(unet.parameters()) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_unet.copy_to(unet.parameters()) |
|
|
|
pipeline = StableDiffusionXLInstructPix2PixPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
text_encoder=text_encoder_1, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer_1, |
|
tokenizer_2=tokenizer_2, |
|
vae=vae, |
|
unet=unwrap_model(unet), |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
if (args.val_image_url_or_path is not None) and (args.validation_prompt is not None): |
|
log_validation( |
|
pipeline, |
|
args, |
|
accelerator, |
|
generator, |
|
global_step, |
|
is_final_validation=True, |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|