diffusers-sdxl-controlnet
/
examples
/research_projects
/intel_opts
/textual_inversion_dfq
/text2images.py
import argparse | |
import math | |
import os | |
import torch | |
from neural_compressor.utils.pytorch import load | |
from PIL import Image | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNet2DConditionModel | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-m", | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"-c", | |
"--caption", | |
type=str, | |
default="robotic cat with wings", | |
help="Text used to generate images.", | |
) | |
parser.add_argument( | |
"-n", | |
"--images_num", | |
type=int, | |
default=4, | |
help="How much images to generate.", | |
) | |
parser.add_argument( | |
"-s", | |
"--seed", | |
type=int, | |
default=42, | |
help="Seed for random process.", | |
) | |
parser.add_argument( | |
"-ci", | |
"--cuda_id", | |
type=int, | |
default=0, | |
help="cuda_id.", | |
) | |
args = parser.parse_args() | |
return args | |
def image_grid(imgs, rows, cols): | |
if not len(imgs) == rows * cols: | |
raise ValueError("The specified number of rows and columns are not correct.") | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def generate_images( | |
pipeline, | |
prompt="robotic cat with wings", | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
num_images_per_prompt=1, | |
seed=42, | |
): | |
generator = torch.Generator(pipeline.device).manual_seed(seed) | |
images = pipeline( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
_rows = int(math.sqrt(num_images_per_prompt)) | |
grid = image_grid(images, rows=_rows, cols=num_images_per_prompt // _rows) | |
return grid, images | |
args = parse_args() | |
# Load models and create wrapper for stable diffusion | |
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer | |
) | |
pipeline.safety_checker = lambda images, clip_input: (images, False) | |
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): | |
unet = load(args.pretrained_model_name_or_path, model=unet) | |
unet.eval() | |
setattr(pipeline, "unet", unet) | |
else: | |
unet = unet.to(torch.device("cuda", args.cuda_id)) | |
pipeline = pipeline.to(unet.device) | |
grid, images = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) | |
grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) | |
dirname = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) | |
os.makedirs(dirname, exist_ok=True) | |
for idx, image in enumerate(images): | |
image.save(os.path.join(dirname, "{}.png".format(idx + 1))) | |