diffusers-sdxl-controlnet / scripts /convert_kandinsky_to_diffusers.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
52.9 kB
import argparse
import os
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from diffusers import UNet2DConditionModel
from diffusers.models.transformers.prior_transformer import PriorTransformer
from diffusers.models.vq_model import VQModel
"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget https://huggingface.co/ai-forever/Kandinsky_2.1/blob/main/prior_fp16.ckpt
```
Convert the model:
```sh
python scripts/convert_kandinsky_to_diffusers.py \
--prior_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/prior_fp16.ckpt \
--clip_stat_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/ViT-L-14_stats.th \
--text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/decoder_fp16.ckpt \
--inpaint_text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/inpainting_fp16.ckpt \
--movq_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/movq_final.ckpt \
--dump_path /home/yiyi_huggingface_co/dump \
--debug decoder
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "model"
# Uses default arguments
PRIOR_CONFIG = {}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"],
}
)
# <original>.clip_img_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"],
}
)
# <original>.text_emb_proj -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"],
}
)
# <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj
diffusers_checkpoint.update(
{
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"],
}
)
# <original>.positional_embedding -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]})
# <original>.prd_emb -> <diffusers>.prd_embedding
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]})
# <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"],
}
)
# <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.final_ln -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"],
}
)
# <original>.out_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"],
}
)
# clip stats
clip_mean, clip_std = clip_stats_checkpoint
clip_mean = clip_mean[None, :]
clip_std = clip_std[None, :]
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std})
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# unet
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_image",
"addition_embed_type_num_heads": 64,
"attention_head_dim": 64,
"block_out_channels": [384, 768, 1152, 1536],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": False,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 768,
"cross_attention_norm": None,
"down_block_types": [
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": 1024,
"encoder_hid_dim_type": "text_image_proj",
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 3,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"projection_class_embeddings_input_dim": None,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "scale_shift",
"sample_size": 64,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"up_block_types": [
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"upcast_attention": False,
"use_linear_projection": False,
}
def unet_model_from_original_config():
model = UNet2DConditionModel(**UNET_CONFIG)
return model
def unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
num_head_channels = UNET_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint))
diffusers_checkpoint.update(unet_conv_in(checkpoint))
diffusers_checkpoint.update(unet_add_embedding(checkpoint))
diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint))
diffusers_checkpoint.update(unet_conv_out(checkpoint))
return diffusers_checkpoint
# done unet
# inpaint unet
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
INPAINT_UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_image",
"addition_embed_type_num_heads": 64,
"attention_head_dim": 64,
"block_out_channels": [384, 768, 1152, 1536],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": None,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 768,
"cross_attention_norm": None,
"down_block_types": [
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": 1024,
"encoder_hid_dim_type": "text_image_proj",
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 9,
"layers_per_block": 3,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"projection_class_embeddings_input_dim": None,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "scale_shift",
"sample_size": 64,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"up_block_types": [
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"upcast_attention": False,
"use_linear_projection": False,
}
def inpaint_unet_model_from_original_config():
model = UNet2DConditionModel(**INPAINT_UNET_CONFIG)
return model
def inpaint_unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
num_head_channels = INPAINT_UNET_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint))
diffusers_checkpoint.update(unet_conv_in(checkpoint))
diffusers_checkpoint.update(unet_add_embedding(checkpoint))
diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint))
diffusers_checkpoint.update(unet_conv_out(checkpoint))
return diffusers_checkpoint
# done inpaint unet
# unet utils
# <original>.time_embed -> <diffusers>.time_embedding
def unet_time_embeddings(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint["time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint["time_embed.0.bias"],
"time_embedding.linear_2.weight": checkpoint["time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint["time_embed.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks.0 -> <diffusers>.conv_in
def unet_conv_in(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_in.weight": checkpoint["input_blocks.0.0.weight"],
"conv_in.bias": checkpoint["input_blocks.0.0.bias"],
}
)
return diffusers_checkpoint
def unet_add_embedding(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"add_embedding.text_norm.weight": checkpoint["ln_model_n.weight"],
"add_embedding.text_norm.bias": checkpoint["ln_model_n.bias"],
"add_embedding.text_proj.weight": checkpoint["proj_n.weight"],
"add_embedding.text_proj.bias": checkpoint["proj_n.bias"],
"add_embedding.image_proj.weight": checkpoint["img_layer.weight"],
"add_embedding.image_proj.bias": checkpoint["img_layer.bias"],
}
)
return diffusers_checkpoint
def unet_encoder_hid_proj(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"encoder_hid_proj.image_embeds.weight": checkpoint["clip_to_seq.weight"],
"encoder_hid_proj.image_embeds.bias": checkpoint["clip_to_seq.bias"],
"encoder_hid_proj.text_proj.weight": checkpoint["to_model_dim_n.weight"],
"encoder_hid_proj.text_proj.bias": checkpoint["to_model_dim_n.bias"],
}
)
return diffusers_checkpoint
# <original>.out.0 -> <diffusers>.conv_norm_out
def unet_conv_norm_out(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_norm_out.weight": checkpoint["out.0.weight"],
"conv_norm_out.bias": checkpoint["out.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.2 -> <diffusers>.conv_out
def unet_conv_out(checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_out.weight": checkpoint["out.2.weight"],
"conv_out.bias": checkpoint["out.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks -> <diffusers>.down_blocks
def unet_downblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets"
original_down_block_prefix = "input_blocks"
down_block = model.down_blocks[diffusers_down_block_idx]
num_resnets = len(down_block.resnets)
if down_block.downsamplers is None:
downsampler = False
else:
assert len(down_block.downsamplers) == 1
downsampler = True
# The downsample block is also a resnet
num_resnets += 1
for resnet_idx_inc in range(num_resnets):
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0"
if downsampler and resnet_idx_inc == num_resnets - 1:
# this is a downsample block
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0"
else:
# this is a regular resnet block
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if hasattr(down_block, "attentions"):
num_attentions = len(down_block.attentions)
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets
return diffusers_checkpoint, num_original_down_blocks
# <original>.middle_block -> <diffusers>.mid_block
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, num_head_channels):
diffusers_checkpoint = {}
# block 0
original_block_idx = 0
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.0",
resnet_prefix=f"middle_block.{original_block_idx}",
)
)
original_block_idx += 1
# optional block 1
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None:
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix="mid_block.attentions.0",
attention_prefix=f"middle_block.{original_block_idx}",
num_head_channels=num_head_channels,
)
)
original_block_idx += 1
# block 1 or block 2
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.1",
resnet_prefix=f"middle_block.{original_block_idx}",
)
)
return diffusers_checkpoint
# <original>.output_blocks -> <diffusers>.up_blocks
def unet_upblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets"
original_up_block_prefix = "output_blocks"
up_block = model.up_blocks[diffusers_up_block_idx]
num_resnets = len(up_block.resnets)
if up_block.upsamplers is None:
upsampler = False
else:
assert len(up_block.upsamplers) == 1
upsampler = True
# The upsample block is also a resnet
num_resnets += 1
has_attentions = hasattr(up_block, "attentions")
for resnet_idx_inc in range(num_resnets):
if upsampler and resnet_idx_inc == num_resnets - 1:
# this is an upsample block
if has_attentions:
# There is a middle attention block that we skip
original_resnet_block_idx = 2
else:
original_resnet_block_idx = 1
# we add the `minus 1` because the last two resnets are stuck together in the same output block
full_resnet_prefix = (
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}"
)
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0"
else:
# this is a regular resnet block
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0"
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if has_attentions:
num_attentions = len(up_block.attentions)
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets
return diffusers_checkpoint, num_original_down_blocks
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
diffusers_checkpoint = {
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"],
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"],
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"],
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"],
}
skip_connection_prefix = f"{resnet_prefix}.skip_connection"
if f"{skip_connection_prefix}.weight" in checkpoint:
diffusers_checkpoint.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"],
}
)
return diffusers_checkpoint
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels):
diffusers_checkpoint = {}
# <original>.norm -> <diffusers>.group_norm
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
}
)
# <original>.qkv -> <diffusers>.{query, key, value}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.qkv.bias"],
split=3,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.encoder_kv -> <diffusers>.{context_key, context_value}
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"],
split=2,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight,
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias,
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight,
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias,
}
)
# <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0
],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
)
return diffusers_checkpoint
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(
prior_model, prior_checkpoint, clip_stats_checkpoint
)
del prior_checkpoint
del clip_stats_checkpoint
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True)
print("done loading prior")
return prior_model
def text2img(*, args, checkpoint_map_location):
print("loading text2img")
text2img_checkpoint = torch.load(args.text2img_checkpoint_path, map_location=checkpoint_map_location)
unet_model = unet_model_from_original_config()
unet_diffusers_checkpoint = unet_original_checkpoint_to_diffusers_checkpoint(unet_model, text2img_checkpoint)
del text2img_checkpoint
load_checkpoint_to_model(unet_diffusers_checkpoint, unet_model, strict=True)
print("done loading text2img")
return unet_model
def inpaint_text2img(*, args, checkpoint_map_location):
print("loading inpaint text2img")
inpaint_text2img_checkpoint = torch.load(
args.inpaint_text2img_checkpoint_path, map_location=checkpoint_map_location
)
inpaint_unet_model = inpaint_unet_model_from_original_config()
inpaint_unet_diffusers_checkpoint = inpaint_unet_original_checkpoint_to_diffusers_checkpoint(
inpaint_unet_model, inpaint_text2img_checkpoint
)
del inpaint_text2img_checkpoint
load_checkpoint_to_model(inpaint_unet_diffusers_checkpoint, inpaint_unet_model, strict=True)
print("done loading inpaint text2img")
return inpaint_unet_model
# movq
MOVQ_CONFIG = {
"in_channels": 3,
"out_channels": 3,
"latent_channels": 4,
"down_block_types": ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D"),
"up_block_types": ("AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"),
"num_vq_embeddings": 16384,
"block_out_channels": (128, 256, 256, 512),
"vq_embed_dim": 4,
"layers_per_block": 2,
"norm_type": "spatial",
}
def movq_model_from_original_config():
movq = VQModel(**MOVQ_CONFIG)
return movq
def movq_encoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv_in
diffusers_checkpoint.update(
{
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"],
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"],
}
)
# down_blocks
for down_block_idx, down_block in enumerate(model.encoder.down_blocks):
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}"
down_block_prefix = f"encoder.down.{down_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(down_block.resnets):
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# downsample
# do not include the downsample when on the last down block
# There is no downsample on the last down block
if down_block_idx != len(model.encoder.down_blocks) - 1:
# There's a single downsample in the original checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv"
downsample_prefix = f"{down_block_prefix}.downsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(down_block, "attentions"):
for attention_idx, _ in enumerate(down_block.attentions):
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion encoder
diffusers_attention_prefix = "encoder.mid_block.attentions.0"
attention_prefix = "encoder.mid.attn_1"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion encoder
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"],
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"],
# conv_out
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"],
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def movq_decoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv in
diffusers_checkpoint.update(
{
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"],
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"],
}
)
# up_blocks
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks):
# up_blocks are stored in reverse order in the VQ-diffusion checkpoint
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}"
up_block_prefix = f"decoder.up.{orig_up_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(up_block.resnets):
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint_spatial_norm(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# upsample
# there is no up sample on the last up block
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1:
# There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv"
downsample_prefix = f"{up_block_prefix}.upsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(up_block, "attentions"):
for attention_idx, _ in enumerate(up_block.attentions):
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint_spatial_norm(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion decoder
diffusers_attention_prefix = "decoder.mid_block.attentions.0"
attention_prefix = "decoder.mid.attn_1"
diffusers_checkpoint.update(
movq_attention_to_diffusers_checkpoint_spatial_norm(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion decoder
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
movq_resnet_to_diffusers_checkpoint_spatial_norm(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"decoder.conv_norm_out.norm_layer.weight": checkpoint["decoder.norm_out.norm_layer.weight"],
"decoder.conv_norm_out.norm_layer.bias": checkpoint["decoder.norm_out.norm_layer.bias"],
"decoder.conv_norm_out.conv_y.weight": checkpoint["decoder.norm_out.conv_y.weight"],
"decoder.conv_norm_out.conv_y.bias": checkpoint["decoder.norm_out.conv_y.bias"],
"decoder.conv_norm_out.conv_b.weight": checkpoint["decoder.norm_out.conv_b.weight"],
"decoder.conv_norm_out.conv_b.bias": checkpoint["decoder.norm_out.conv_b.bias"],
# conv_out
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"],
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def movq_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def movq_resnet_to_diffusers_checkpoint_spatial_norm(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm1.norm_layer.weight"],
f"{diffusers_resnet_prefix}.norm1.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm1.norm_layer.bias"],
f"{diffusers_resnet_prefix}.norm1.conv_y.weight": checkpoint[f"{resnet_prefix}.norm1.conv_y.weight"],
f"{diffusers_resnet_prefix}.norm1.conv_y.bias": checkpoint[f"{resnet_prefix}.norm1.conv_y.bias"],
f"{diffusers_resnet_prefix}.norm1.conv_b.weight": checkpoint[f"{resnet_prefix}.norm1.conv_b.weight"],
f"{diffusers_resnet_prefix}.norm1.conv_b.bias": checkpoint[f"{resnet_prefix}.norm1.conv_b.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm2.norm_layer.weight"],
f"{diffusers_resnet_prefix}.norm2.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm2.norm_layer.bias"],
f"{diffusers_resnet_prefix}.norm2.conv_y.weight": checkpoint[f"{resnet_prefix}.norm2.conv_y.weight"],
f"{diffusers_resnet_prefix}.norm2.conv_y.bias": checkpoint[f"{resnet_prefix}.norm2.conv_y.bias"],
f"{diffusers_resnet_prefix}.norm2.conv_b.weight": checkpoint[f"{resnet_prefix}.norm2.conv_b.weight"],
f"{diffusers_resnet_prefix}.norm2.conv_b.bias": checkpoint[f"{resnet_prefix}.norm2.conv_b.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def movq_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# norm
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
def movq_attention_to_diffusers_checkpoint_spatial_norm(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# norm
f"{diffusers_attention_prefix}.spatial_norm.norm_layer.weight": checkpoint[
f"{attention_prefix}.norm.norm_layer.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.norm_layer.bias": checkpoint[
f"{attention_prefix}.norm.norm_layer.bias"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_y.weight": checkpoint[
f"{attention_prefix}.norm.conv_y.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_y.bias": checkpoint[f"{attention_prefix}.norm.conv_y.bias"],
f"{diffusers_attention_prefix}.spatial_norm.conv_b.weight": checkpoint[
f"{attention_prefix}.norm.conv_b.weight"
],
f"{diffusers_attention_prefix}.spatial_norm.conv_b.bias": checkpoint[f"{attention_prefix}.norm.conv_b.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
def movq_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(movq_encoder_to_diffusers_checkpoint(model, checkpoint))
# quant_conv
diffusers_checkpoint.update(
{
"quant_conv.weight": checkpoint["quant_conv.weight"],
"quant_conv.bias": checkpoint["quant_conv.bias"],
}
)
# quantize
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding.weight"]})
# post_quant_conv
diffusers_checkpoint.update(
{
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"],
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"],
}
)
# decoder
diffusers_checkpoint.update(movq_decoder_to_diffusers_checkpoint(model, checkpoint))
return diffusers_checkpoint
def movq(*, args, checkpoint_map_location):
print("loading movq")
movq_checkpoint = torch.load(args.movq_checkpoint_path, map_location=checkpoint_map_location)
movq_model = movq_model_from_original_config()
movq_diffusers_checkpoint = movq_original_checkpoint_to_diffusers_checkpoint(movq_model, movq_checkpoint)
del movq_checkpoint
load_checkpoint_to_model(movq_diffusers_checkpoint, movq_model, strict=True)
print("done loading movq")
return movq_model
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile(delete=False) as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
os.remove(file.name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--clip_stat_path",
default=None,
type=str,
required=False,
help="Path to the clip stats checkpoint to convert.",
)
parser.add_argument(
"--text2img_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the text2img checkpoint to convert.",
)
parser.add_argument(
"--movq_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the text2img checkpoint to convert.",
)
parser.add_argument(
"--inpaint_text2img_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the inpaint text2img checkpoint to convert.",
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
print("to-do")
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "text2img":
unet_model = text2img(args=args, checkpoint_map_location=checkpoint_map_location)
unet_model.save_pretrained(f"{args.dump_path}/unet")
elif args.debug == "inpaint_text2img":
inpaint_unet_model = inpaint_text2img(args=args, checkpoint_map_location=checkpoint_map_location)
inpaint_unet_model.save_pretrained(f"{args.dump_path}/inpaint_unet")
elif args.debug == "decoder":
decoder = movq(args=args, checkpoint_map_location=checkpoint_map_location)
decoder.save_pretrained(f"{args.dump_path}/decoder")
else:
raise ValueError(f"unknown debug value : {args.debug}")