|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ConfigMixin base class and utilities.""" |
|
|
|
import dataclasses |
|
import functools |
|
import importlib |
|
import inspect |
|
import json |
|
import os |
|
import re |
|
from collections import OrderedDict |
|
from pathlib import PosixPath |
|
from typing import Any, Dict, Tuple, Union |
|
|
|
import numpy as np |
|
from huggingface_hub import create_repo, hf_hub_download |
|
from huggingface_hub.utils import ( |
|
EntryNotFoundError, |
|
RepositoryNotFoundError, |
|
RevisionNotFoundError, |
|
validate_hf_hub_args, |
|
) |
|
from requests import HTTPError |
|
|
|
from . import __version__ |
|
from .utils import ( |
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT, |
|
DummyObject, |
|
deprecate, |
|
extract_commit_hash, |
|
http_user_agent, |
|
logging, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_re_configuration_file = re.compile(r"config\.(.*)\.json") |
|
|
|
|
|
class FrozenDict(OrderedDict): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
for key, value in self.items(): |
|
setattr(self, key, value) |
|
|
|
self.__frozen = True |
|
|
|
def __delitem__(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") |
|
|
|
def setdefault(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") |
|
|
|
def pop(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") |
|
|
|
def update(self, *args, **kwargs): |
|
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") |
|
|
|
def __setattr__(self, name, value): |
|
if hasattr(self, "__frozen") and self.__frozen: |
|
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") |
|
super().__setattr__(name, value) |
|
|
|
def __setitem__(self, name, value): |
|
if hasattr(self, "__frozen") and self.__frozen: |
|
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") |
|
super().__setitem__(name, value) |
|
|
|
|
|
class ConfigMixin: |
|
r""" |
|
Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also |
|
provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and |
|
saving classes that inherit from [`ConfigMixin`]. |
|
|
|
Class attributes: |
|
- **config_name** (`str`) -- A filename under which the config should stored when calling |
|
[`~ConfigMixin.save_config`] (should be overridden by parent class). |
|
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be |
|
overridden by subclass). |
|
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass). |
|
- **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function |
|
should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by |
|
subclass). |
|
""" |
|
|
|
config_name = None |
|
ignore_for_config = [] |
|
has_compatibles = False |
|
|
|
_deprecated_kwargs = [] |
|
|
|
def register_to_config(self, **kwargs): |
|
if self.config_name is None: |
|
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`") |
|
|
|
|
|
|
|
kwargs.pop("kwargs", None) |
|
|
|
if not hasattr(self, "_internal_dict"): |
|
internal_dict = kwargs |
|
else: |
|
previous_dict = dict(self._internal_dict) |
|
internal_dict = {**self._internal_dict, **kwargs} |
|
logger.debug(f"Updating config from {previous_dict} to {internal_dict}") |
|
|
|
self._internal_dict = FrozenDict(internal_dict) |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing |
|
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 |
|
|
|
This function is mostly copied from PyTorch's __getattr__ overwrite: |
|
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module |
|
""" |
|
|
|
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name) |
|
is_attribute = name in self.__dict__ |
|
|
|
if is_in_config and not is_attribute: |
|
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'." |
|
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) |
|
return self._internal_dict[name] |
|
|
|
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") |
|
|
|
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the |
|
[`~ConfigMixin.from_config`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file is saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
output_config_file = os.path.join(save_directory, self.config_name) |
|
|
|
self.to_json_file(output_config_file) |
|
logger.info(f"Configuration saved in {output_config_file}") |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
private = kwargs.pop("private", False) |
|
create_pr = kwargs.pop("create_pr", False) |
|
token = kwargs.pop("token", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id |
|
|
|
self._upload_folder( |
|
save_directory, |
|
repo_id, |
|
token=token, |
|
commit_message=commit_message, |
|
create_pr=create_pr, |
|
) |
|
|
|
@classmethod |
|
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs): |
|
r""" |
|
Instantiate a Python class from a config dictionary. |
|
|
|
Parameters: |
|
config (`Dict[str, Any]`): |
|
A config dictionary from which the Python class is instantiated. Make sure to only load configuration |
|
files of compatible classes. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
Whether kwargs that are not consumed by the Python class should be returned or not. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to update the configuration object (after it is loaded) and initiate the Python class. |
|
`**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually |
|
overwrite the same named arguments in `config`. |
|
|
|
Returns: |
|
[`ModelMixin`] or [`SchedulerMixin`]: |
|
A model or scheduler object instantiated from a config dictionary. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler |
|
|
|
>>> # Download scheduler from huggingface.co and cache. |
|
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32") |
|
|
|
>>> # Instantiate DDIM scheduler class with same config as DDPM |
|
>>> scheduler = DDIMScheduler.from_config(scheduler.config) |
|
|
|
>>> # Instantiate PNDM scheduler class with same config as DDPM |
|
>>> scheduler = PNDMScheduler.from_config(scheduler.config) |
|
``` |
|
""" |
|
|
|
|
|
if "pretrained_model_name_or_path" in kwargs: |
|
config = kwargs.pop("pretrained_model_name_or_path") |
|
|
|
if config is None: |
|
raise ValueError("Please make sure to provide a config as the first positional argument.") |
|
|
|
|
|
if not isinstance(config, dict): |
|
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`." |
|
if "Scheduler" in cls.__name__: |
|
deprecation_message += ( |
|
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead." |
|
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will" |
|
" be removed in v1.0.0." |
|
) |
|
elif "Model" in cls.__name__: |
|
deprecation_message += ( |
|
f"If you were trying to load a model, please use {cls}.load_config(...) followed by" |
|
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary" |
|
" instead. This functionality will be removed in v1.0.0." |
|
) |
|
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False) |
|
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs) |
|
|
|
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs) |
|
|
|
|
|
if "dtype" in unused_kwargs: |
|
init_dict["dtype"] = unused_kwargs.pop("dtype") |
|
|
|
|
|
for deprecated_kwarg in cls._deprecated_kwargs: |
|
if deprecated_kwarg in unused_kwargs: |
|
init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg) |
|
|
|
|
|
model = cls(**init_dict) |
|
|
|
|
|
|
|
if "_class_name" in hidden_dict: |
|
hidden_dict["_class_name"] = cls.__name__ |
|
|
|
model.register_to_config(**hidden_dict) |
|
|
|
|
|
unused_kwargs = {**unused_kwargs, **hidden_dict} |
|
|
|
if return_unused_kwargs: |
|
return (model, unused_kwargs) |
|
else: |
|
return model |
|
|
|
@classmethod |
|
def get_config_dict(cls, *args, **kwargs): |
|
deprecation_message = ( |
|
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be" |
|
" removed in version v1.0.0" |
|
) |
|
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False) |
|
return cls.load_config(*args, **kwargs) |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def load_config( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
return_unused_kwargs=False, |
|
return_commit_hash=False, |
|
**kwargs, |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
r""" |
|
Load a model or scheduler configuration. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing model weights saved with |
|
[`~ConfigMixin.save_config`]. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False): |
|
Whether unused keyword arguments of the config are returned. |
|
return_commit_hash (`bool`, *optional*, defaults to `False): |
|
Whether the `commit_hash` of the loaded configuration are returned. |
|
|
|
Returns: |
|
`dict`: |
|
A dictionary of all the parameters stored in a JSON configuration file. |
|
|
|
""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
local_dir = kwargs.pop("local_dir", None) |
|
local_dir_use_symlinks = kwargs.pop("local_dir_use_symlinks", "auto") |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", None) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
_ = kwargs.pop("mirror", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
user_agent = kwargs.pop("user_agent", {}) |
|
|
|
user_agent = {**user_agent, "file_type": "config"} |
|
user_agent = http_user_agent(user_agent) |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
|
|
if cls.config_name is None: |
|
raise ValueError( |
|
"`self.config_name` is not defined. Note that one should not load a config from " |
|
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`" |
|
) |
|
|
|
if os.path.isfile(pretrained_model_name_or_path): |
|
config_file = pretrained_model_name_or_path |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
if subfolder is not None and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) |
|
): |
|
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) |
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)): |
|
|
|
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}." |
|
) |
|
else: |
|
try: |
|
|
|
config_file = hf_hub_download( |
|
pretrained_model_name_or_path, |
|
filename=cls.config_name, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
subfolder=subfolder, |
|
revision=revision, |
|
local_dir=local_dir, |
|
local_dir_use_symlinks=local_dir_use_symlinks, |
|
) |
|
except RepositoryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier" |
|
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a" |
|
" token having permission to this repo with `token` or log in with `huggingface-cli login`." |
|
) |
|
except RevisionNotFoundError: |
|
raise EnvironmentError( |
|
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for" |
|
" this model name. Check the model page at" |
|
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." |
|
) |
|
except EntryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}." |
|
) |
|
except HTTPError as err: |
|
raise EnvironmentError( |
|
"There was a specific connection error when trying to load" |
|
f" {pretrained_model_name_or_path}:\n{err}" |
|
) |
|
except ValueError: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" |
|
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" |
|
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to" |
|
" run the library in offline mode at" |
|
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'." |
|
) |
|
except EnvironmentError: |
|
raise EnvironmentError( |
|
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from " |
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " |
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " |
|
f"containing a {cls.config_name} file" |
|
) |
|
|
|
try: |
|
|
|
config_dict = cls._dict_from_json_file(config_file) |
|
|
|
commit_hash = extract_commit_hash(config_file) |
|
except (json.JSONDecodeError, UnicodeDecodeError): |
|
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.") |
|
|
|
if not (return_unused_kwargs or return_commit_hash): |
|
return config_dict |
|
|
|
outputs = (config_dict,) |
|
|
|
if return_unused_kwargs: |
|
outputs += (kwargs,) |
|
|
|
if return_commit_hash: |
|
outputs += (commit_hash,) |
|
|
|
return outputs |
|
|
|
@staticmethod |
|
def _get_init_keys(input_class): |
|
return set(dict(inspect.signature(input_class.__init__).parameters).keys()) |
|
|
|
@classmethod |
|
def extract_init_dict(cls, config_dict, **kwargs): |
|
|
|
used_defaults = config_dict.get("_use_default_values", []) |
|
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"} |
|
|
|
|
|
original_dict = dict(config_dict.items()) |
|
|
|
|
|
expected_keys = cls._get_init_keys(cls) |
|
expected_keys.remove("self") |
|
|
|
if "kwargs" in expected_keys: |
|
expected_keys.remove("kwargs") |
|
|
|
if hasattr(cls, "_flax_internal_args"): |
|
for arg in cls._flax_internal_args: |
|
expected_keys.remove(arg) |
|
|
|
|
|
|
|
if len(cls.ignore_for_config) > 0: |
|
expected_keys = expected_keys - set(cls.ignore_for_config) |
|
|
|
|
|
diffusers_library = importlib.import_module(__name__.split(".")[0]) |
|
|
|
if cls.has_compatibles: |
|
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)] |
|
else: |
|
compatible_classes = [] |
|
|
|
expected_keys_comp_cls = set() |
|
for c in compatible_classes: |
|
expected_keys_c = cls._get_init_keys(c) |
|
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c) |
|
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls) |
|
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls} |
|
|
|
|
|
orig_cls_name = config_dict.pop("_class_name", cls.__name__) |
|
if ( |
|
isinstance(orig_cls_name, str) |
|
and orig_cls_name != cls.__name__ |
|
and hasattr(diffusers_library, orig_cls_name) |
|
): |
|
orig_cls = getattr(diffusers_library, orig_cls_name) |
|
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys |
|
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig} |
|
elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)): |
|
raise ValueError( |
|
"Make sure that the `_class_name` is of type string or list of string (for custom pipelines)." |
|
) |
|
|
|
|
|
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")} |
|
|
|
|
|
init_dict = {} |
|
for key in expected_keys: |
|
|
|
|
|
if key in kwargs and key in config_dict: |
|
config_dict[key] = kwargs.pop(key) |
|
|
|
if key in kwargs: |
|
|
|
init_dict[key] = kwargs.pop(key) |
|
elif key in config_dict: |
|
|
|
init_dict[key] = config_dict.pop(key) |
|
|
|
|
|
if len(config_dict) > 0: |
|
logger.warning( |
|
f"The config attributes {config_dict} were passed to {cls.__name__}, " |
|
"but are not expected and will be ignored. Please verify your " |
|
f"{cls.config_name} configuration file." |
|
) |
|
|
|
|
|
passed_keys = set(init_dict.keys()) |
|
if len(expected_keys - passed_keys) > 0: |
|
logger.info( |
|
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values." |
|
) |
|
|
|
|
|
unused_kwargs = {**config_dict, **kwargs} |
|
|
|
|
|
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict} |
|
|
|
return init_dict, unused_kwargs, hidden_config_dict |
|
|
|
@classmethod |
|
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__} {self.to_json_string()}" |
|
|
|
@property |
|
def config(self) -> Dict[str, Any]: |
|
""" |
|
Returns the config of the class as a frozen dictionary |
|
|
|
Returns: |
|
`Dict[str, Any]`: Config of the class. |
|
""" |
|
return self._internal_dict |
|
|
|
def to_json_string(self) -> str: |
|
""" |
|
Serializes the configuration instance to a JSON string. |
|
|
|
Returns: |
|
`str`: |
|
String containing all the attributes that make up the configuration instance in JSON format. |
|
""" |
|
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {} |
|
config_dict["_class_name"] = self.__class__.__name__ |
|
config_dict["_diffusers_version"] = __version__ |
|
|
|
def to_json_saveable(value): |
|
if isinstance(value, np.ndarray): |
|
value = value.tolist() |
|
elif isinstance(value, PosixPath): |
|
value = str(value) |
|
return value |
|
|
|
config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()} |
|
|
|
config_dict.pop("_ignore_files", None) |
|
config_dict.pop("_use_default_values", None) |
|
|
|
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]): |
|
""" |
|
Save the configuration instance's parameters to a JSON file. |
|
|
|
Args: |
|
json_file_path (`str` or `os.PathLike`): |
|
Path to the JSON file to save a configuration instance's parameters. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
|
|
def register_to_config(init): |
|
r""" |
|
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are |
|
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that |
|
shouldn't be registered in the config, use the `ignore_for_config` class variable |
|
|
|
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init! |
|
""" |
|
|
|
@functools.wraps(init) |
|
def inner_init(self, *args, **kwargs): |
|
|
|
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")} |
|
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")} |
|
if not isinstance(self, ConfigMixin): |
|
raise RuntimeError( |
|
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does " |
|
"not inherit from `ConfigMixin`." |
|
) |
|
|
|
ignore = getattr(self, "ignore_for_config", []) |
|
|
|
new_kwargs = {} |
|
signature = inspect.signature(init) |
|
parameters = { |
|
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore |
|
} |
|
for arg, name in zip(args, parameters.keys()): |
|
new_kwargs[name] = arg |
|
|
|
|
|
new_kwargs.update( |
|
{ |
|
k: init_kwargs.get(k, default) |
|
for k, default in parameters.items() |
|
if k not in ignore and k not in new_kwargs |
|
} |
|
) |
|
|
|
|
|
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0: |
|
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs)) |
|
|
|
new_kwargs = {**config_init_kwargs, **new_kwargs} |
|
getattr(self, "register_to_config")(**new_kwargs) |
|
init(self, *args, **init_kwargs) |
|
|
|
return inner_init |
|
|
|
|
|
def flax_register_to_config(cls): |
|
original_init = cls.__init__ |
|
|
|
@functools.wraps(original_init) |
|
def init(self, *args, **kwargs): |
|
if not isinstance(self, ConfigMixin): |
|
raise RuntimeError( |
|
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does " |
|
"not inherit from `ConfigMixin`." |
|
) |
|
|
|
|
|
init_kwargs = dict(kwargs.items()) |
|
|
|
|
|
fields = dataclasses.fields(self) |
|
default_kwargs = {} |
|
for field in fields: |
|
|
|
if field.name in self._flax_internal_args: |
|
continue |
|
if type(field.default) == dataclasses._MISSING_TYPE: |
|
default_kwargs[field.name] = None |
|
else: |
|
default_kwargs[field.name] = getattr(self, field.name) |
|
|
|
|
|
new_kwargs = {**default_kwargs, **init_kwargs} |
|
|
|
if "dtype" in new_kwargs: |
|
new_kwargs.pop("dtype") |
|
|
|
|
|
for i, arg in enumerate(args): |
|
name = fields[i].name |
|
new_kwargs[name] = arg |
|
|
|
|
|
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0: |
|
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs)) |
|
|
|
getattr(self, "register_to_config")(**new_kwargs) |
|
original_init(self, *args, **kwargs) |
|
|
|
cls.__init__ = init |
|
return cls |
|
|
|
|
|
class LegacyConfigMixin(ConfigMixin): |
|
r""" |
|
A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more |
|
pipeline-specific classes (like `DiTTransformer2DModel`). |
|
""" |
|
|
|
@classmethod |
|
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs): |
|
|
|
from .models.model_loading_utils import _fetch_remapped_cls_from_config |
|
|
|
|
|
remapped_class = _fetch_remapped_cls_from_config(config, cls) |
|
|
|
return remapped_class.from_config(config, return_unused_kwargs, **kwargs) |
|
|