|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from .single_file_utils import ( |
|
create_diffusers_vae_model_from_ldm, |
|
fetch_ldm_config_and_checkpoint, |
|
) |
|
|
|
|
|
class FromOriginalVAEMixin: |
|
""" |
|
Load pretrained AutoencoderKL weights saved in the `.ckpt` or `.safetensors` format into a [`AutoencoderKL`]. |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or |
|
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
config_file (`str`, *optional*): |
|
Filepath to the configuration YAML file associated with the model. If not provided it will default to: |
|
https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z |
|
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution |
|
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
<Tip warning={true}> |
|
|
|
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading |
|
a VAE from SDXL or a Stable Diffusion v2 model or higher. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import AutoencoderKL |
|
|
|
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file |
|
model = AutoencoderKL.from_single_file(url) |
|
``` |
|
""" |
|
|
|
original_config_file = kwargs.pop("original_config_file", None) |
|
config_file = kwargs.pop("config_file", None) |
|
resume_download = kwargs.pop("resume_download", None) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
class_name = cls.__name__ |
|
|
|
if (config_file is not None) and (original_config_file is not None): |
|
raise ValueError( |
|
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments." |
|
) |
|
|
|
original_config_file = original_config_file or config_file |
|
original_config, checkpoint = fetch_ldm_config_and_checkpoint( |
|
pretrained_model_link_or_path=pretrained_model_link_or_path, |
|
class_name=class_name, |
|
original_config_file=original_config_file, |
|
resume_download=resume_download, |
|
force_download=force_download, |
|
proxies=proxies, |
|
token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
image_size = kwargs.pop("image_size", None) |
|
scaling_factor = kwargs.pop("scaling_factor", None) |
|
component = create_diffusers_vae_model_from_ldm( |
|
class_name, |
|
original_config, |
|
checkpoint, |
|
image_size=image_size, |
|
scaling_factor=scaling_factor, |
|
torch_dtype=torch_dtype, |
|
) |
|
vae = component["vae"] |
|
if torch_dtype is not None: |
|
vae = vae.to(torch_dtype) |
|
|
|
return vae |
|
|