|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import inspect |
|
import os |
|
|
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args |
|
from packaging import version |
|
|
|
from ..utils import deprecate, is_transformers_available, logging |
|
from .single_file_utils import ( |
|
SingleFileComponentError, |
|
_is_model_weights_in_cached_folder, |
|
_legacy_load_clip_tokenizer, |
|
_legacy_load_safety_checker, |
|
_legacy_load_scheduler, |
|
create_diffusers_clip_model_from_ldm, |
|
create_diffusers_t5_model_from_checkpoint, |
|
fetch_diffusers_config, |
|
fetch_original_config, |
|
is_clip_model_in_single_file, |
|
is_t5_in_single_file, |
|
load_single_file_checkpoint, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"] |
|
|
|
|
|
if is_transformers_available(): |
|
import transformers |
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
|
|
|
|
def load_single_file_sub_model( |
|
library_name, |
|
class_name, |
|
name, |
|
checkpoint, |
|
pipelines, |
|
is_pipeline_module, |
|
cached_model_config_path, |
|
original_config=None, |
|
local_files_only=False, |
|
torch_dtype=None, |
|
is_legacy_loading=False, |
|
**kwargs, |
|
): |
|
if is_pipeline_module: |
|
pipeline_module = getattr(pipelines, library_name) |
|
class_obj = getattr(pipeline_module, class_name) |
|
else: |
|
|
|
library = importlib.import_module(library_name) |
|
class_obj = getattr(library, class_name) |
|
|
|
if is_transformers_available(): |
|
transformers_version = version.parse(version.parse(transformers.__version__).base_version) |
|
else: |
|
transformers_version = "N/A" |
|
|
|
is_transformers_model = ( |
|
is_transformers_available() |
|
and issubclass(class_obj, PreTrainedModel) |
|
and transformers_version >= version.parse("4.20.0") |
|
) |
|
is_tokenizer = ( |
|
is_transformers_available() |
|
and issubclass(class_obj, PreTrainedTokenizer) |
|
and transformers_version >= version.parse("4.20.0") |
|
) |
|
|
|
diffusers_module = importlib.import_module(__name__.split(".")[0]) |
|
is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin) |
|
is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) |
|
is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin) |
|
|
|
if is_diffusers_single_file_model: |
|
load_method = getattr(class_obj, "from_single_file") |
|
|
|
|
|
|
|
if original_config: |
|
cached_model_config_path = None |
|
|
|
loaded_sub_model = load_method( |
|
pretrained_model_link_or_path_or_dict=checkpoint, |
|
original_config=original_config, |
|
config=cached_model_config_path, |
|
subfolder=name, |
|
torch_dtype=torch_dtype, |
|
local_files_only=local_files_only, |
|
**kwargs, |
|
) |
|
|
|
elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint): |
|
loaded_sub_model = create_diffusers_clip_model_from_ldm( |
|
class_obj, |
|
checkpoint=checkpoint, |
|
config=cached_model_config_path, |
|
subfolder=name, |
|
torch_dtype=torch_dtype, |
|
local_files_only=local_files_only, |
|
is_legacy_loading=is_legacy_loading, |
|
) |
|
|
|
elif is_transformers_model and is_t5_in_single_file(checkpoint): |
|
loaded_sub_model = create_diffusers_t5_model_from_checkpoint( |
|
class_obj, |
|
checkpoint=checkpoint, |
|
config=cached_model_config_path, |
|
subfolder=name, |
|
torch_dtype=torch_dtype, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
elif is_tokenizer and is_legacy_loading: |
|
loaded_sub_model = _legacy_load_clip_tokenizer( |
|
class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only |
|
) |
|
|
|
elif is_diffusers_scheduler and is_legacy_loading: |
|
loaded_sub_model = _legacy_load_scheduler( |
|
class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs |
|
) |
|
|
|
else: |
|
if not hasattr(class_obj, "from_pretrained"): |
|
raise ValueError( |
|
( |
|
f"The component {class_obj.__name__} cannot be loaded as it does not seem to have" |
|
" a supported loading method." |
|
) |
|
) |
|
|
|
loading_kwargs = {} |
|
loading_kwargs.update( |
|
{ |
|
"pretrained_model_name_or_path": cached_model_config_path, |
|
"subfolder": name, |
|
"local_files_only": local_files_only, |
|
} |
|
) |
|
|
|
|
|
|
|
if issubclass(class_obj, torch.nn.Module): |
|
loading_kwargs.update({"torch_dtype": torch_dtype}) |
|
|
|
if is_diffusers_model or is_transformers_model: |
|
if not _is_model_weights_in_cached_folder(cached_model_config_path, name): |
|
raise SingleFileComponentError( |
|
f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint." |
|
) |
|
|
|
load_method = getattr(class_obj, "from_pretrained") |
|
loaded_sub_model = load_method(**loading_kwargs) |
|
|
|
return loaded_sub_model |
|
|
|
|
|
def _map_component_types_to_config_dict(component_types): |
|
diffusers_module = importlib.import_module(__name__.split(".")[0]) |
|
config_dict = {} |
|
component_types.pop("self", None) |
|
|
|
if is_transformers_available(): |
|
transformers_version = version.parse(version.parse(transformers.__version__).base_version) |
|
else: |
|
transformers_version = "N/A" |
|
|
|
for component_name, component_value in component_types.items(): |
|
is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin) |
|
is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers" |
|
is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin) |
|
|
|
is_transformers_model = ( |
|
is_transformers_available() |
|
and issubclass(component_value[0], PreTrainedModel) |
|
and transformers_version >= version.parse("4.20.0") |
|
) |
|
is_transformers_tokenizer = ( |
|
is_transformers_available() |
|
and issubclass(component_value[0], PreTrainedTokenizer) |
|
and transformers_version >= version.parse("4.20.0") |
|
) |
|
|
|
if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: |
|
config_dict[component_name] = ["diffusers", component_value[0].__name__] |
|
|
|
elif is_scheduler_enum or is_scheduler: |
|
if is_scheduler_enum: |
|
|
|
|
|
config_dict[component_name] = ["diffusers", "DDIMScheduler"] |
|
|
|
elif is_scheduler: |
|
config_dict[component_name] = ["diffusers", component_value[0].__name__] |
|
|
|
elif ( |
|
is_transformers_model or is_transformers_tokenizer |
|
) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: |
|
config_dict[component_name] = ["transformers", component_value[0].__name__] |
|
|
|
else: |
|
config_dict[component_name] = [None, None] |
|
|
|
return config_dict |
|
|
|
|
|
def _infer_pipeline_config_dict(pipeline_class): |
|
parameters = inspect.signature(pipeline_class.__init__).parameters |
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} |
|
component_types = pipeline_class._get_signature_types() |
|
|
|
|
|
component_types = {k: v for k, v in component_types.items() if k in required_parameters} |
|
config_dict = _map_component_types_to_config_dict(component_types) |
|
|
|
return config_dict |
|
|
|
|
|
def _download_diffusers_model_config_from_hub( |
|
pretrained_model_name_or_path, |
|
cache_dir, |
|
revision, |
|
proxies, |
|
force_download=None, |
|
resume_download=None, |
|
local_files_only=None, |
|
token=None, |
|
): |
|
allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"] |
|
cached_model_path = snapshot_download( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
revision=revision, |
|
proxies=proxies, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
allow_patterns=allow_patterns, |
|
) |
|
|
|
return cached_model_path |
|
|
|
|
|
class FromSingleFileMixin: |
|
""" |
|
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` |
|
format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
original_config_file (`str`, *optional*): |
|
The path to the original config file that was used to train the model. If not provided, the config file |
|
will be inferred from the checkpoint file. |
|
config (`str`, *optional*): |
|
Can be either: |
|
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline |
|
hosted on the Hub. |
|
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline |
|
component configs in Diffusers format. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline |
|
class). The overwritten components are passed directly to the pipelines `__init__` method. See example |
|
below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import StableDiffusionPipeline |
|
|
|
>>> # Download pipeline from huggingface.co and cache. |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" |
|
... ) |
|
|
|
>>> # Download pipeline from local file |
|
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt |
|
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt") |
|
|
|
>>> # Enable float16 and move to GPU |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", |
|
... torch_dtype=torch.float16, |
|
... ) |
|
>>> pipeline.to("cuda") |
|
``` |
|
|
|
""" |
|
original_config_file = kwargs.pop("original_config_file", None) |
|
config = kwargs.pop("config", None) |
|
original_config = kwargs.pop("original_config", None) |
|
|
|
if original_config_file is not None: |
|
deprecation_message = ( |
|
"`original_config_file` argument is deprecated and will be removed in future versions." |
|
"please use the `original_config` argument instead." |
|
) |
|
deprecate("original_config_file", "1.0.0", deprecation_message) |
|
original_config = original_config_file |
|
|
|
resume_download = kwargs.pop("resume_download", None) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
is_legacy_loading = False |
|
|
|
|
|
|
|
scaling_factor = kwargs.get("scaling_factor", None) |
|
if scaling_factor is not None: |
|
deprecation_message = ( |
|
"Passing the `scaling_factor` argument to `from_single_file is deprecated " |
|
"and will be ignored in future versions." |
|
) |
|
deprecate("scaling_factor", "1.0.0", deprecation_message) |
|
|
|
if original_config is not None: |
|
original_config = fetch_original_config(original_config, local_files_only=local_files_only) |
|
|
|
from ..pipelines.pipeline_utils import _get_pipeline_class |
|
|
|
pipeline_class = _get_pipeline_class(cls, config=None) |
|
|
|
checkpoint = load_single_file_checkpoint( |
|
pretrained_model_link_or_path, |
|
resume_download=resume_download, |
|
force_download=force_download, |
|
proxies=proxies, |
|
token=token, |
|
cache_dir=cache_dir, |
|
local_files_only=local_files_only, |
|
revision=revision, |
|
) |
|
|
|
if config is None: |
|
config = fetch_diffusers_config(checkpoint) |
|
default_pretrained_model_config_name = config["pretrained_model_name_or_path"] |
|
else: |
|
default_pretrained_model_config_name = config |
|
|
|
if not os.path.isdir(default_pretrained_model_config_name): |
|
|
|
if default_pretrained_model_config_name.count("/") > 1: |
|
raise ValueError( |
|
f'The provided config "{config}"' |
|
" is neither a valid local path nor a valid repo id. Please check the parameter." |
|
) |
|
try: |
|
|
|
cached_model_config_path = _download_diffusers_model_config_from_hub( |
|
default_pretrained_model_config_name, |
|
cache_dir=cache_dir, |
|
revision=revision, |
|
proxies=proxies, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
) |
|
config_dict = pipeline_class.load_config(cached_model_config_path) |
|
|
|
except LocalEntryNotFoundError: |
|
|
|
|
|
|
|
|
|
|
|
if original_config is None: |
|
logger.warning( |
|
"`local_files_only` is True but no local configs were found for this checkpoint.\n" |
|
"Attempting to download the necessary config files for this pipeline.\n" |
|
) |
|
cached_model_config_path = _download_diffusers_model_config_from_hub( |
|
default_pretrained_model_config_name, |
|
cache_dir=cache_dir, |
|
revision=revision, |
|
proxies=proxies, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
local_files_only=False, |
|
token=token, |
|
) |
|
config_dict = pipeline_class.load_config(cached_model_config_path) |
|
|
|
else: |
|
|
|
|
|
logger.warning( |
|
"Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n" |
|
"This may lead to errors if the model components are not correctly inferred. \n" |
|
"To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n" |
|
"e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n" |
|
"or run `from_single_file` with `local_files_only=False` first to update the local cache directory with " |
|
"the necessary config files.\n" |
|
) |
|
is_legacy_loading = True |
|
cached_model_config_path = None |
|
|
|
config_dict = _infer_pipeline_config_dict(pipeline_class) |
|
config_dict["_class_name"] = pipeline_class.__name__ |
|
|
|
else: |
|
|
|
cached_model_config_path = default_pretrained_model_config_name |
|
config_dict = pipeline_class.load_config(cached_model_config_path) |
|
|
|
|
|
config_dict.pop("_ignore_files", None) |
|
|
|
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls) |
|
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} |
|
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} |
|
|
|
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) |
|
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} |
|
init_kwargs = {**init_kwargs, **passed_pipe_kwargs} |
|
|
|
from diffusers import pipelines |
|
|
|
|
|
def load_module(name, value): |
|
if value[0] is None: |
|
return False |
|
if name in passed_class_obj and passed_class_obj[name] is None: |
|
return False |
|
if name in SINGLE_FILE_OPTIONAL_COMPONENTS: |
|
return False |
|
|
|
return True |
|
|
|
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} |
|
|
|
for name, (library_name, class_name) in logging.tqdm( |
|
sorted(init_dict.items()), desc="Loading pipeline components..." |
|
): |
|
loaded_sub_model = None |
|
is_pipeline_module = hasattr(pipelines, library_name) |
|
|
|
if name in passed_class_obj: |
|
loaded_sub_model = passed_class_obj[name] |
|
|
|
else: |
|
try: |
|
loaded_sub_model = load_single_file_sub_model( |
|
library_name=library_name, |
|
class_name=class_name, |
|
name=name, |
|
checkpoint=checkpoint, |
|
is_pipeline_module=is_pipeline_module, |
|
cached_model_config_path=cached_model_config_path, |
|
pipelines=pipelines, |
|
torch_dtype=torch_dtype, |
|
original_config=original_config, |
|
local_files_only=local_files_only, |
|
is_legacy_loading=is_legacy_loading, |
|
**kwargs, |
|
) |
|
except SingleFileComponentError as e: |
|
raise SingleFileComponentError( |
|
( |
|
f"{e.message}\n" |
|
f"Please load the component before passing it in as an argument to `from_single_file`.\n" |
|
f"\n" |
|
f"{name} = {class_name}.from_pretrained('...')\n" |
|
f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n" |
|
f"\n" |
|
) |
|
) |
|
|
|
init_kwargs[name] = loaded_sub_model |
|
|
|
missing_modules = set(expected_modules) - set(init_kwargs.keys()) |
|
passed_modules = list(passed_class_obj.keys()) |
|
optional_modules = pipeline_class._optional_components |
|
|
|
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): |
|
for module in missing_modules: |
|
init_kwargs[module] = passed_class_obj.get(module, None) |
|
elif len(missing_modules) > 0: |
|
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs |
|
raise ValueError( |
|
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." |
|
) |
|
|
|
|
|
load_safety_checker = kwargs.pop("load_safety_checker", None) |
|
if load_safety_checker is not None: |
|
deprecation_message = ( |
|
"Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`" |
|
"using the `safety_checker` and `feature_extractor` arguments in `from_single_file`" |
|
) |
|
deprecate("load_safety_checker", "1.0.0", deprecation_message) |
|
|
|
safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype) |
|
init_kwargs.update(safety_checker_components) |
|
|
|
pipe = pipeline_class(**init_kwargs) |
|
|
|
if torch_dtype is not None: |
|
pipe.to(dtype=torch_dtype) |
|
|
|
return pipe |
|
|