|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import re |
|
from contextlib import nullcontext |
|
from typing import Optional |
|
|
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from ..utils import deprecate, is_accelerate_available, logging |
|
from .single_file_utils import ( |
|
SingleFileComponentError, |
|
convert_controlnet_checkpoint, |
|
convert_ldm_unet_checkpoint, |
|
convert_ldm_vae_checkpoint, |
|
convert_sd3_transformer_checkpoint_to_diffusers, |
|
convert_stable_cascade_unet_single_file_to_diffusers, |
|
create_controlnet_diffusers_config_from_ldm, |
|
create_unet_diffusers_config_from_ldm, |
|
create_vae_diffusers_config_from_ldm, |
|
fetch_diffusers_config, |
|
fetch_original_config, |
|
load_single_file_checkpoint, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
from ..models.modeling_utils import load_model_dict_into_meta |
|
|
|
|
|
SINGLE_FILE_LOADABLE_CLASSES = { |
|
"StableCascadeUNet": { |
|
"checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers, |
|
}, |
|
"UNet2DConditionModel": { |
|
"checkpoint_mapping_fn": convert_ldm_unet_checkpoint, |
|
"config_mapping_fn": create_unet_diffusers_config_from_ldm, |
|
"default_subfolder": "unet", |
|
"legacy_kwargs": { |
|
"num_in_channels": "in_channels", |
|
}, |
|
}, |
|
"AutoencoderKL": { |
|
"checkpoint_mapping_fn": convert_ldm_vae_checkpoint, |
|
"config_mapping_fn": create_vae_diffusers_config_from_ldm, |
|
"default_subfolder": "vae", |
|
}, |
|
"ControlNetModel": { |
|
"checkpoint_mapping_fn": convert_controlnet_checkpoint, |
|
"config_mapping_fn": create_controlnet_diffusers_config_from_ldm, |
|
}, |
|
"SD3Transformer2DModel": { |
|
"checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers, |
|
"default_subfolder": "transformer", |
|
}, |
|
} |
|
|
|
|
|
def _get_mapping_function_kwargs(mapping_fn, **kwargs): |
|
parameters = inspect.signature(mapping_fn).parameters |
|
|
|
mapping_kwargs = {} |
|
for parameter in parameters: |
|
if parameter in kwargs: |
|
mapping_kwargs[parameter] = kwargs[parameter] |
|
|
|
return mapping_kwargs |
|
|
|
|
|
class FromOriginalModelMixin: |
|
""" |
|
Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model. |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs): |
|
r""" |
|
Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model |
|
is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path_or_dict (`str`, *optional*): |
|
Can be either: |
|
- A link to the `.safetensors` or `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub. |
|
- A path to a local *file* containing the weights of the component model. |
|
- A state dict containing the component model weights. |
|
config (`str`, *optional*): |
|
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted |
|
on the Hub. |
|
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component |
|
configs in Diffusers format. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
original_config (`str`, *optional*): |
|
Dict or path to a yaml file containing the configuration for the model in its original format. |
|
If a dict is provided, it will be used to initialize the model configuration. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
```py |
|
>>> from diffusers import StableCascadeUNet |
|
|
|
>>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors" |
|
>>> model = StableCascadeUNet.from_single_file(ckpt_path) |
|
``` |
|
""" |
|
|
|
class_name = cls.__name__ |
|
if class_name not in SINGLE_FILE_LOADABLE_CLASSES: |
|
raise ValueError( |
|
f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}" |
|
) |
|
|
|
pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None) |
|
if pretrained_model_link_or_path is not None: |
|
deprecation_message = ( |
|
"Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes" |
|
) |
|
deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message) |
|
pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path |
|
|
|
config = kwargs.pop("config", None) |
|
original_config = kwargs.pop("original_config", None) |
|
|
|
if config is not None and original_config is not None: |
|
raise ValueError( |
|
"`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments" |
|
) |
|
|
|
resume_download = kwargs.pop("resume_download", None) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
if isinstance(pretrained_model_link_or_path_or_dict, dict): |
|
checkpoint = pretrained_model_link_or_path_or_dict |
|
else: |
|
checkpoint = load_single_file_checkpoint( |
|
pretrained_model_link_or_path_or_dict, |
|
resume_download=resume_download, |
|
force_download=force_download, |
|
proxies=proxies, |
|
token=token, |
|
cache_dir=cache_dir, |
|
local_files_only=local_files_only, |
|
revision=revision, |
|
) |
|
|
|
mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[class_name] |
|
|
|
checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"] |
|
if original_config: |
|
if "config_mapping_fn" in mapping_functions: |
|
config_mapping_fn = mapping_functions["config_mapping_fn"] |
|
else: |
|
config_mapping_fn = None |
|
|
|
if config_mapping_fn is None: |
|
raise ValueError( |
|
( |
|
f"`original_config` has been provided for {class_name} but no mapping function" |
|
"was found to convert the original config to a Diffusers config in" |
|
"`diffusers.loaders.single_file_utils`" |
|
) |
|
) |
|
|
|
if isinstance(original_config, str): |
|
|
|
original_config = fetch_original_config(original_config, local_files_only=local_files_only) |
|
|
|
config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs) |
|
diffusers_model_config = config_mapping_fn( |
|
original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs |
|
) |
|
else: |
|
if config: |
|
if isinstance(config, str): |
|
default_pretrained_model_config_name = config |
|
else: |
|
raise ValueError( |
|
( |
|
"Invalid `config` argument. Please provide a string representing a repo id" |
|
"or path to a local Diffusers model repo." |
|
) |
|
) |
|
|
|
else: |
|
config = fetch_diffusers_config(checkpoint) |
|
default_pretrained_model_config_name = config["pretrained_model_name_or_path"] |
|
|
|
if "default_subfolder" in mapping_functions: |
|
subfolder = mapping_functions["default_subfolder"] |
|
|
|
subfolder = subfolder or config.pop( |
|
"subfolder", None |
|
) |
|
|
|
diffusers_model_config = cls.load_config( |
|
pretrained_model_name_or_path=default_pretrained_model_config_name, |
|
subfolder=subfolder, |
|
local_files_only=local_files_only, |
|
) |
|
expected_kwargs, optional_kwargs = cls._get_signature_keys(cls) |
|
|
|
|
|
if "legacy_kwargs" in mapping_functions: |
|
legacy_kwargs = mapping_functions["legacy_kwargs"] |
|
for legacy_key, new_key in legacy_kwargs.items(): |
|
if legacy_key in kwargs: |
|
kwargs[new_key] = kwargs.pop(legacy_key) |
|
|
|
model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs} |
|
diffusers_model_config.update(model_kwargs) |
|
|
|
checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs) |
|
diffusers_format_checkpoint = checkpoint_mapping_fn( |
|
config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs |
|
) |
|
if not diffusers_format_checkpoint: |
|
raise SingleFileComponentError( |
|
f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint." |
|
) |
|
|
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
model = cls.from_config(diffusers_model_config) |
|
|
|
if is_accelerate_available(): |
|
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) |
|
|
|
else: |
|
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) |
|
|
|
if model._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in model._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" |
|
) |
|
|
|
if torch_dtype is not None: |
|
model.to(torch_dtype) |
|
|
|
model.eval() |
|
|
|
return model |
|
|