diffusers-sdxl-controlnet
/
src
/diffusers
/models
/autoencoders
/autoencoder_kl_temporal_decoder.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import is_torch_version | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor | |
from ..modeling_outputs import AutoencoderKLOutput | |
from ..modeling_utils import ModelMixin | |
from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder | |
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder | |
class TemporalDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 4, | |
out_channels: int = 3, | |
block_out_channels: Tuple[int] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) | |
self.mid_block = MidBlockTemporalDecoder( | |
num_layers=self.layers_per_block, | |
in_channels=block_out_channels[-1], | |
out_channels=block_out_channels[-1], | |
attention_head_dim=block_out_channels[-1], | |
) | |
# up | |
self.up_blocks = nn.ModuleList([]) | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i in range(len(block_out_channels)): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = UpBlockTemporalDecoder( | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
add_upsample=not is_final_block, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = torch.nn.Conv2d( | |
in_channels=block_out_channels[0], | |
out_channels=out_channels, | |
kernel_size=3, | |
padding=1, | |
) | |
conv_out_kernel_size = (3, 1, 1) | |
padding = [int(k // 2) for k in conv_out_kernel_size] | |
self.time_conv_out = torch.nn.Conv3d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=conv_out_kernel_size, | |
padding=padding, | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
sample: torch.Tensor, | |
image_only_indicator: torch.Tensor, | |
num_frames: int = 1, | |
) -> torch.Tensor: | |
r"""The forward method of the `Decoder` class.""" | |
sample = self.conv_in(sample) | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
sample, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), | |
sample, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
sample, | |
image_only_indicator, | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), | |
sample, | |
image_only_indicator, | |
) | |
else: | |
# middle | |
sample = self.mid_block(sample, image_only_indicator=image_only_indicator) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = up_block(sample, image_only_indicator=image_only_indicator) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
batch_frames, channels, height, width = sample.shape | |
batch_size = batch_frames // num_frames | |
sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) | |
sample = self.time_conv_out(sample) | |
sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) | |
return sample | |
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin): | |
r""" | |
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block. | |
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
scaling_factor (`float`, *optional*, defaults to 0.18215): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
force_upcast (`bool`, *optional*, default to `True`): | |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), | |
block_out_channels: Tuple[int] = (64,), | |
layers_per_block: int = 1, | |
latent_channels: int = 4, | |
sample_size: int = 32, | |
scaling_factor: float = 0.18215, | |
force_upcast: float = True, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
double_z=True, | |
) | |
# pass init params to Decoder | |
self.decoder = TemporalDecoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
) | |
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
sample_size = ( | |
self.config.sample_size[0] | |
if isinstance(self.config.sample_size, (list, tuple)) | |
else self.config.sample_size | |
) | |
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) | |
self.tile_overlap_factor = 0.25 | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (Encoder, TemporalDecoder)): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.Tensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain | |
tuple. | |
Returns: | |
The latent representations of the encoded images. If `return_dict` is True, a | |
[`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def decode( | |
self, | |
z: torch.Tensor, | |
num_frames: int, | |
return_dict: bool = True, | |
) -> Union[DecoderOutput, torch.Tensor]: | |
""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
batch_size = z.shape[0] // num_frames | |
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device) | |
decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator) | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
num_frames: int = 1, | |
) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Args: | |
sample (`torch.Tensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z, num_frames=num_frames).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |