|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...utils import BaseOutput, is_torch_version |
|
from ...utils.torch_utils import randn_tensor |
|
from ..activations import get_activation |
|
from ..attention_processor import SpatialNorm |
|
from ..unets.unet_2d_blocks import ( |
|
AutoencoderTinyBlock, |
|
UNetMidBlock2D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
|
|
|
|
@dataclass |
|
class DecoderOutput(BaseOutput): |
|
r""" |
|
Output of decoding method. |
|
|
|
Args: |
|
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`): |
|
The decoded output sample from the last layer of the model. |
|
""" |
|
|
|
sample: torch.Tensor |
|
commit_loss: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class Encoder(nn.Module): |
|
r""" |
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available |
|
options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
double_z (`bool`, *optional*, defaults to `True`): |
|
Whether to double the number of output channels for the last block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
double_z: bool = True, |
|
mid_block_add_attention=True, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=self.layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=None, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
add_attention=mid_block_add_attention, |
|
) |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.Tensor) -> torch.Tensor: |
|
r"""The forward method of the `Encoder` class.""" |
|
|
|
sample = self.conv_in(sample) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(down_block), sample, use_reentrant=False |
|
) |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, use_reentrant=False |
|
) |
|
else: |
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) |
|
|
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) |
|
|
|
else: |
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class Decoder(nn.Module): |
|
r""" |
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
norm_type (`str`, *optional*, defaults to `"group"`): |
|
The normalization type to use. Can be either `"group"` or `"spatial"`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
norm_type: str = "group", |
|
mid_block_add_attention=True, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[-1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
temb_channels = in_channels if norm_type == "spatial" else None |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=temb_channels, |
|
add_attention=mid_block_add_attention, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_upsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=temb_channels, |
|
resnet_time_scale_shift=norm_type, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_type == "spatial": |
|
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) |
|
else: |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
latent_embeds: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
r"""The forward method of the `Decoder` class.""" |
|
|
|
sample = self.conv_in(sample) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
else: |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, latent_embeds |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) |
|
else: |
|
|
|
sample = self.mid_block(sample, latent_embeds) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample, latent_embeds) |
|
|
|
|
|
if latent_embeds is None: |
|
sample = self.conv_norm_out(sample) |
|
else: |
|
sample = self.conv_norm_out(sample, latent_embeds) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class UpSample(nn.Module): |
|
r""" |
|
The `UpSample` layer of a variational autoencoder that upsamples its input. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
) -> None: |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
r"""The forward method of the `UpSample` class.""" |
|
x = torch.relu(x) |
|
x = self.deconv(x) |
|
return x |
|
|
|
|
|
class MaskConditionEncoder(nn.Module): |
|
""" |
|
used in AsymmetricAutoencoderKL |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_ch: int, |
|
out_ch: int = 192, |
|
res_ch: int = 768, |
|
stride: int = 16, |
|
) -> None: |
|
super().__init__() |
|
|
|
channels = [] |
|
while stride > 1: |
|
stride = stride // 2 |
|
in_ch_ = out_ch * 2 |
|
if out_ch > res_ch: |
|
out_ch = res_ch |
|
if stride == 1: |
|
in_ch_ = res_ch |
|
channels.append((in_ch_, out_ch)) |
|
out_ch *= 2 |
|
|
|
out_channels = [] |
|
for _in_ch, _out_ch in channels: |
|
out_channels.append(_out_ch) |
|
out_channels.append(channels[-1][0]) |
|
|
|
layers = [] |
|
in_ch_ = in_ch |
|
for l in range(len(out_channels)): |
|
out_ch_ = out_channels[l] |
|
if l == 0 or l == 1: |
|
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1)) |
|
else: |
|
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1)) |
|
in_ch_ = out_ch_ |
|
|
|
self.layers = nn.Sequential(*layers) |
|
|
|
def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor: |
|
r"""The forward method of the `MaskConditionEncoder` class.""" |
|
out = {} |
|
for l in range(len(self.layers)): |
|
layer = self.layers[l] |
|
x = layer(x) |
|
out[str(tuple(x.shape))] = x |
|
x = torch.relu(x) |
|
return out |
|
|
|
|
|
class MaskConditionDecoder(nn.Module): |
|
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's |
|
decoder with a conditioner on the mask and masked image. |
|
|
|
Args: |
|
in_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
out_channels (`int`, *optional*, defaults to 3): |
|
The number of output channels. |
|
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. |
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): |
|
The number of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups for normalization. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
norm_type (`str`, *optional*, defaults to `"group"`): |
|
The normalization type to use. Can be either `"group"` or `"spatial"`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
norm_type: str = "group", |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[-1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
temb_channels = in_channels if norm_type == "spatial" else None |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=temb_channels, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_upsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=temb_channels, |
|
resnet_time_scale_shift=norm_type, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.condition_encoder = MaskConditionEncoder( |
|
in_ch=out_channels, |
|
out_ch=block_out_channels[0], |
|
res_ch=block_out_channels[-1], |
|
) |
|
|
|
|
|
if norm_type == "spatial": |
|
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) |
|
else: |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
z: torch.Tensor, |
|
image: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None, |
|
latent_embeds: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
r"""The forward method of the `MaskConditionDecoder` class.""" |
|
sample = z |
|
sample = self.conv_in(sample) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
if image is not None and mask is not None: |
|
masked_image = (1 - mask) * image |
|
im_x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.condition_encoder), |
|
masked_image, |
|
mask, |
|
use_reentrant=False, |
|
) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
if image is not None and mask is not None: |
|
sample_ = im_x[str(tuple(sample.shape))] |
|
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") |
|
sample = sample * mask_ + sample_ * (1 - mask_) |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
if image is not None and mask is not None: |
|
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) |
|
else: |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), sample, latent_embeds |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
if image is not None and mask is not None: |
|
masked_image = (1 - mask) * image |
|
im_x = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.condition_encoder), |
|
masked_image, |
|
mask, |
|
) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
if image is not None and mask is not None: |
|
sample_ = im_x[str(tuple(sample.shape))] |
|
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") |
|
sample = sample * mask_ + sample_ * (1 - mask_) |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) |
|
if image is not None and mask is not None: |
|
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) |
|
else: |
|
|
|
sample = self.mid_block(sample, latent_embeds) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
if image is not None and mask is not None: |
|
masked_image = (1 - mask) * image |
|
im_x = self.condition_encoder(masked_image, mask) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
if image is not None and mask is not None: |
|
sample_ = im_x[str(tuple(sample.shape))] |
|
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest") |
|
sample = sample * mask_ + sample_ * (1 - mask_) |
|
sample = up_block(sample, latent_embeds) |
|
if image is not None and mask is not None: |
|
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) |
|
|
|
|
|
if latent_embeds is None: |
|
sample = self.conv_norm_out(sample) |
|
else: |
|
sample = self.conv_norm_out(sample, latent_embeds) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix |
|
multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
n_e: int, |
|
vq_embed_dim: int, |
|
beta: float, |
|
remap=None, |
|
unknown_index: str = "random", |
|
sane_index_shape: bool = False, |
|
legacy: bool = True, |
|
): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.vq_embed_dim = vq_embed_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.used: torch.Tensor |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print( |
|
f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices." |
|
) |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor: |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor: |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]: |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.vq_embed_dim) |
|
|
|
|
|
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1) |
|
|
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q: torch.Tensor = z + (z_q - z).detach() |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor: |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q: torch.Tensor = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like( |
|
self.mean, device=self.parameters.device, dtype=self.parameters.dtype |
|
) |
|
|
|
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor: |
|
|
|
sample = randn_tensor( |
|
self.mean.shape, |
|
generator=generator, |
|
device=self.parameters.device, |
|
dtype=self.parameters.dtype, |
|
) |
|
x = self.mean + self.std * sample |
|
return x |
|
|
|
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
if other is None: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, |
|
dim=[1, 2, 3], |
|
) |
|
else: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean - other.mean, 2) / other.var |
|
+ self.var / other.var |
|
- 1.0 |
|
- self.logvar |
|
+ other.logvar, |
|
dim=[1, 2, 3], |
|
) |
|
|
|
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum( |
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims, |
|
) |
|
|
|
def mode(self) -> torch.Tensor: |
|
return self.mean |
|
|
|
|
|
class EncoderTiny(nn.Module): |
|
r""" |
|
The `EncoderTiny` layer is a simpler version of the `Encoder` layer. |
|
|
|
Args: |
|
in_channels (`int`): |
|
The number of input channels. |
|
out_channels (`int`): |
|
The number of output channels. |
|
num_blocks (`Tuple[int, ...]`): |
|
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to |
|
use. |
|
block_out_channels (`Tuple[int, ...]`): |
|
The number of output channels for each block. |
|
act_fn (`str`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
num_blocks: Tuple[int, ...], |
|
block_out_channels: Tuple[int, ...], |
|
act_fn: str, |
|
): |
|
super().__init__() |
|
|
|
layers = [] |
|
for i, num_block in enumerate(num_blocks): |
|
num_channels = block_out_channels[i] |
|
|
|
if i == 0: |
|
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1)) |
|
else: |
|
layers.append( |
|
nn.Conv2d( |
|
num_channels, |
|
num_channels, |
|
kernel_size=3, |
|
padding=1, |
|
stride=2, |
|
bias=False, |
|
) |
|
) |
|
|
|
for _ in range(num_block): |
|
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) |
|
|
|
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1)) |
|
|
|
self.layers = nn.Sequential(*layers) |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
r"""The forward method of the `EncoderTiny` class.""" |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) |
|
else: |
|
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) |
|
|
|
else: |
|
|
|
x = self.layers(x.add(1).div(2)) |
|
|
|
return x |
|
|
|
|
|
class DecoderTiny(nn.Module): |
|
r""" |
|
The `DecoderTiny` layer is a simpler version of the `Decoder` layer. |
|
|
|
Args: |
|
in_channels (`int`): |
|
The number of input channels. |
|
out_channels (`int`): |
|
The number of output channels. |
|
num_blocks (`Tuple[int, ...]`): |
|
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to |
|
use. |
|
block_out_channels (`Tuple[int, ...]`): |
|
The number of output channels for each block. |
|
upsampling_scaling_factor (`int`): |
|
The scaling factor to use for upsampling. |
|
act_fn (`str`): |
|
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
num_blocks: Tuple[int, ...], |
|
block_out_channels: Tuple[int, ...], |
|
upsampling_scaling_factor: int, |
|
act_fn: str, |
|
upsample_fn: str, |
|
): |
|
super().__init__() |
|
|
|
layers = [ |
|
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1), |
|
get_activation(act_fn), |
|
] |
|
|
|
for i, num_block in enumerate(num_blocks): |
|
is_final_block = i == (len(num_blocks) - 1) |
|
num_channels = block_out_channels[i] |
|
|
|
for _ in range(num_block): |
|
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) |
|
|
|
if not is_final_block: |
|
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn)) |
|
|
|
conv_out_channel = num_channels if not is_final_block else out_channels |
|
layers.append( |
|
nn.Conv2d( |
|
num_channels, |
|
conv_out_channel, |
|
kernel_size=3, |
|
padding=1, |
|
bias=is_final_block, |
|
) |
|
) |
|
|
|
self.layers = nn.Sequential(*layers) |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
r"""The forward method of the `DecoderTiny` class.""" |
|
|
|
x = torch.tanh(x / 3) * 3 |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) |
|
else: |
|
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) |
|
|
|
else: |
|
x = self.layers(x) |
|
|
|
|
|
return x.mul(2).sub(1) |
|
|