|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.core.frozen_dict import FrozenDict |
|
|
|
from ..configuration_utils import ConfigMixin, flax_register_to_config |
|
from ..utils import BaseOutput |
|
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps |
|
from .modeling_flax_utils import FlaxModelMixin |
|
from .unets.unet_2d_blocks_flax import ( |
|
FlaxCrossAttnDownBlock2D, |
|
FlaxDownBlock2D, |
|
FlaxUNetMidBlock2DCrossAttn, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxControlNetOutput(BaseOutput): |
|
""" |
|
The output of [`FlaxControlNetModel`]. |
|
|
|
Args: |
|
down_block_res_samples (`jnp.ndarray`): |
|
mid_block_res_sample (`jnp.ndarray`): |
|
""" |
|
|
|
down_block_res_samples: jnp.ndarray |
|
mid_block_res_sample: jnp.ndarray |
|
|
|
|
|
class FlaxControlNetConditioningEmbedding(nn.Module): |
|
conditioning_embedding_channels: int |
|
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256) |
|
dtype: jnp.dtype = jnp.float32 |
|
|
|
def setup(self) -> None: |
|
self.conv_in = nn.Conv( |
|
self.block_out_channels[0], |
|
kernel_size=(3, 3), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
|
|
blocks = [] |
|
for i in range(len(self.block_out_channels) - 1): |
|
channel_in = self.block_out_channels[i] |
|
channel_out = self.block_out_channels[i + 1] |
|
conv1 = nn.Conv( |
|
channel_in, |
|
kernel_size=(3, 3), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
blocks.append(conv1) |
|
conv2 = nn.Conv( |
|
channel_out, |
|
kernel_size=(3, 3), |
|
strides=(2, 2), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
blocks.append(conv2) |
|
self.blocks = blocks |
|
|
|
self.conv_out = nn.Conv( |
|
self.conditioning_embedding_channels, |
|
kernel_size=(3, 3), |
|
padding=((1, 1), (1, 1)), |
|
kernel_init=nn.initializers.zeros_init(), |
|
bias_init=nn.initializers.zeros_init(), |
|
dtype=self.dtype, |
|
) |
|
|
|
def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray: |
|
embedding = self.conv_in(conditioning) |
|
embedding = nn.silu(embedding) |
|
|
|
for block in self.blocks: |
|
embedding = block(embedding) |
|
embedding = nn.silu(embedding) |
|
|
|
embedding = self.conv_out(embedding) |
|
|
|
return embedding |
|
|
|
|
|
@flax_register_to_config |
|
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin): |
|
r""" |
|
A ControlNet model. |
|
|
|
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods |
|
implemented for all models (such as downloading or saving). |
|
|
|
This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) |
|
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its |
|
general usage and behavior. |
|
|
|
Inherent JAX features such as the following are supported: |
|
|
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) |
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) |
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) |
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) |
|
|
|
Parameters: |
|
sample_size (`int`, *optional*): |
|
The size of the input sample. |
|
in_channels (`int`, *optional*, defaults to 4): |
|
The number of channels in the input sample. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): |
|
The dimension of the attention heads. |
|
num_attention_heads (`int` or `Tuple[int]`, *optional*): |
|
The number of attention heads. |
|
cross_attention_dim (`int`, *optional*, defaults to 768): |
|
The dimension of the cross attention features. |
|
dropout (`float`, *optional*, defaults to 0): |
|
Dropout probability for down, up and bottleneck blocks. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. |
|
controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`): |
|
The channel order of conditional image. Will convert to `rgb` if it's `bgr`. |
|
conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`): |
|
The tuple of output channel for each block in the `conditioning_embedding` layer. |
|
""" |
|
|
|
sample_size: int = 32 |
|
in_channels: int = 4 |
|
down_block_types: Tuple[str, ...] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
) |
|
only_cross_attention: Union[bool, Tuple[bool, ...]] = False |
|
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280) |
|
layers_per_block: int = 2 |
|
attention_head_dim: Union[int, Tuple[int, ...]] = 8 |
|
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None |
|
cross_attention_dim: int = 1280 |
|
dropout: float = 0.0 |
|
use_linear_projection: bool = False |
|
dtype: jnp.dtype = jnp.float32 |
|
flip_sin_to_cos: bool = True |
|
freq_shift: int = 0 |
|
controlnet_conditioning_channel_order: str = "rgb" |
|
conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256) |
|
|
|
def init_weights(self, rng: jax.Array) -> FrozenDict: |
|
|
|
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) |
|
sample = jnp.zeros(sample_shape, dtype=jnp.float32) |
|
timesteps = jnp.ones((1,), dtype=jnp.int32) |
|
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) |
|
controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8) |
|
controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32) |
|
|
|
params_rng, dropout_rng = jax.random.split(rng) |
|
rngs = {"params": params_rng, "dropout": dropout_rng} |
|
|
|
return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"] |
|
|
|
def setup(self) -> None: |
|
block_out_channels = self.block_out_channels |
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_attention_heads = self.num_attention_heads or self.attention_head_dim |
|
|
|
|
|
self.conv_in = nn.Conv( |
|
block_out_channels[0], |
|
kernel_size=(3, 3), |
|
strides=(1, 1), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
self.time_proj = FlaxTimesteps( |
|
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift |
|
) |
|
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) |
|
|
|
self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding( |
|
conditioning_embedding_channels=block_out_channels[0], |
|
block_out_channels=self.conditioning_embedding_out_channels, |
|
) |
|
|
|
only_cross_attention = self.only_cross_attention |
|
if isinstance(only_cross_attention, bool): |
|
only_cross_attention = (only_cross_attention,) * len(self.down_block_types) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(self.down_block_types) |
|
|
|
|
|
down_blocks = [] |
|
controlnet_down_blocks = [] |
|
|
|
output_channel = block_out_channels[0] |
|
|
|
controlnet_block = nn.Conv( |
|
output_channel, |
|
kernel_size=(1, 1), |
|
padding="VALID", |
|
kernel_init=nn.initializers.zeros_init(), |
|
bias_init=nn.initializers.zeros_init(), |
|
dtype=self.dtype, |
|
) |
|
controlnet_down_blocks.append(controlnet_block) |
|
|
|
for i, down_block_type in enumerate(self.down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
if down_block_type == "CrossAttnDownBlock2D": |
|
down_block = FlaxCrossAttnDownBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
dropout=self.dropout, |
|
num_layers=self.layers_per_block, |
|
num_attention_heads=num_attention_heads[i], |
|
add_downsample=not is_final_block, |
|
use_linear_projection=self.use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
dtype=self.dtype, |
|
) |
|
else: |
|
down_block = FlaxDownBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
dropout=self.dropout, |
|
num_layers=self.layers_per_block, |
|
add_downsample=not is_final_block, |
|
dtype=self.dtype, |
|
) |
|
|
|
down_blocks.append(down_block) |
|
|
|
for _ in range(self.layers_per_block): |
|
controlnet_block = nn.Conv( |
|
output_channel, |
|
kernel_size=(1, 1), |
|
padding="VALID", |
|
kernel_init=nn.initializers.zeros_init(), |
|
bias_init=nn.initializers.zeros_init(), |
|
dtype=self.dtype, |
|
) |
|
controlnet_down_blocks.append(controlnet_block) |
|
|
|
if not is_final_block: |
|
controlnet_block = nn.Conv( |
|
output_channel, |
|
kernel_size=(1, 1), |
|
padding="VALID", |
|
kernel_init=nn.initializers.zeros_init(), |
|
bias_init=nn.initializers.zeros_init(), |
|
dtype=self.dtype, |
|
) |
|
controlnet_down_blocks.append(controlnet_block) |
|
|
|
self.down_blocks = down_blocks |
|
self.controlnet_down_blocks = controlnet_down_blocks |
|
|
|
|
|
mid_block_channel = block_out_channels[-1] |
|
self.mid_block = FlaxUNetMidBlock2DCrossAttn( |
|
in_channels=mid_block_channel, |
|
dropout=self.dropout, |
|
num_attention_heads=num_attention_heads[-1], |
|
use_linear_projection=self.use_linear_projection, |
|
dtype=self.dtype, |
|
) |
|
|
|
self.controlnet_mid_block = nn.Conv( |
|
mid_block_channel, |
|
kernel_size=(1, 1), |
|
padding="VALID", |
|
kernel_init=nn.initializers.zeros_init(), |
|
bias_init=nn.initializers.zeros_init(), |
|
dtype=self.dtype, |
|
) |
|
|
|
def __call__( |
|
self, |
|
sample: jnp.ndarray, |
|
timesteps: Union[jnp.ndarray, float, int], |
|
encoder_hidden_states: jnp.ndarray, |
|
controlnet_cond: jnp.ndarray, |
|
conditioning_scale: float = 1.0, |
|
return_dict: bool = True, |
|
train: bool = False, |
|
) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]: |
|
r""" |
|
Args: |
|
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`jnp.ndarray` or `float` or `int`): timesteps |
|
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states |
|
controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor |
|
conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of |
|
a plain tuple. |
|
train (`bool`, *optional*, defaults to `False`): |
|
Use deterministic functions and disable dropout when not training. |
|
|
|
Returns: |
|
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: |
|
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise |
|
a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
""" |
|
channel_order = self.controlnet_conditioning_channel_order |
|
if channel_order == "bgr": |
|
controlnet_cond = jnp.flip(controlnet_cond, axis=1) |
|
|
|
|
|
if not isinstance(timesteps, jnp.ndarray): |
|
timesteps = jnp.array([timesteps], dtype=jnp.int32) |
|
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: |
|
timesteps = timesteps.astype(dtype=jnp.float32) |
|
timesteps = jnp.expand_dims(timesteps, 0) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
t_emb = self.time_embedding(t_emb) |
|
|
|
|
|
sample = jnp.transpose(sample, (0, 2, 3, 1)) |
|
sample = self.conv_in(sample) |
|
|
|
controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1)) |
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) |
|
sample += controlnet_cond |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for down_block in self.down_blocks: |
|
if isinstance(down_block, FlaxCrossAttnDownBlock2D): |
|
sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) |
|
else: |
|
sample, res_samples = down_block(sample, t_emb, deterministic=not train) |
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) |
|
|
|
|
|
controlnet_down_block_res_samples = () |
|
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): |
|
down_block_res_sample = controlnet_block(down_block_res_sample) |
|
controlnet_down_block_res_samples += (down_block_res_sample,) |
|
|
|
down_block_res_samples = controlnet_down_block_res_samples |
|
|
|
mid_block_res_sample = self.controlnet_mid_block(sample) |
|
|
|
|
|
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] |
|
mid_block_res_sample *= conditioning_scale |
|
|
|
if not return_dict: |
|
return (down_block_res_samples, mid_block_res_sample) |
|
|
|
return FlaxControlNetOutput( |
|
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample |
|
) |
|
|