|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...loaders import UNet2DConditionLoadersMixin |
|
from ...utils import logging |
|
from ..activations import get_activation |
|
from ..attention import Attention, FeedForward |
|
from ..attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from ..embeddings import TimestepEmbedding, Timesteps |
|
from ..modeling_utils import ModelMixin |
|
from ..transformers.transformer_temporal import TransformerTemporalModel |
|
from .unet_3d_blocks import ( |
|
CrossAttnDownBlock3D, |
|
CrossAttnUpBlock3D, |
|
DownBlock3D, |
|
UNetMidBlock3DCrossAttn, |
|
UpBlock3D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
from .unet_3d_condition import UNet3DConditionOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class I2VGenXLTransformerTemporalEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
activation_fn: str = "geglu", |
|
upcast_attention: bool = False, |
|
ff_inner_dim: Optional[int] = None, |
|
dropout: int = 0.0, |
|
): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5) |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=False, |
|
upcast_attention=upcast_attention, |
|
out_bias=True, |
|
) |
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=False, |
|
inner_dim=ff_inner_dim, |
|
bias=True, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) |
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
ff_output = self.ff(hidden_states) |
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
class I2VGenXLUNet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
I2VGenXL UNet. It is a conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and |
|
returns a sample-shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): |
|
The tuple of upsample blocks to use. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. |
|
If `None`, normalization and activation layers is skipped in post-processing. |
|
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. |
|
attention_head_dim (`int`, *optional*, defaults to 64): Attention head dim. |
|
num_attention_heads (`int`, *optional*): The number of attention heads. |
|
""" |
|
|
|
_supports_gradient_checkpointing = False |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
down_block_types: Tuple[str, ...] = ( |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D", |
|
), |
|
up_block_types: Tuple[str, ...] = ( |
|
"UpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), |
|
layers_per_block: int = 2, |
|
norm_num_groups: Optional[int] = 32, |
|
cross_attention_dim: int = 1024, |
|
attention_head_dim: Union[int, Tuple[int]] = 64, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_attention_heads = attention_head_dim |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
self.conv_in = nn.Conv2d(in_channels + in_channels, block_out_channels[0], kernel_size=3, padding=1) |
|
|
|
self.transformer_in = TransformerTemporalModel( |
|
num_attention_heads=8, |
|
attention_head_dim=num_attention_heads, |
|
in_channels=block_out_channels[0], |
|
num_layers=1, |
|
norm_num_groups=norm_num_groups, |
|
) |
|
|
|
|
|
self.image_latents_proj_in = nn.Sequential( |
|
nn.Conv2d(4, in_channels * 4, 3, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(in_channels * 4, in_channels * 4, 3, stride=1, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(in_channels * 4, in_channels, 3, stride=1, padding=1), |
|
) |
|
self.image_latents_temporal_encoder = I2VGenXLTransformerTemporalEncoder( |
|
dim=in_channels, |
|
num_attention_heads=2, |
|
ff_inner_dim=in_channels * 4, |
|
attention_head_dim=in_channels, |
|
activation_fn="gelu", |
|
) |
|
self.image_latents_context_embedding = nn.Sequential( |
|
nn.Conv2d(4, in_channels * 8, 3, padding=1), |
|
nn.SiLU(), |
|
nn.AdaptiveAvgPool2d((32, 32)), |
|
nn.Conv2d(in_channels * 8, in_channels * 16, 3, stride=2, padding=1), |
|
nn.SiLU(), |
|
nn.Conv2d(in_channels * 16, cross_attention_dim, 3, stride=2, padding=1), |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
self.time_proj = Timesteps(block_out_channels[0], True, 0) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn="silu") |
|
self.context_embedding = nn.Sequential( |
|
nn.Linear(cross_attention_dim, time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(time_embed_dim, cross_attention_dim * in_channels), |
|
) |
|
self.fps_embedding = nn.Sequential( |
|
nn.Linear(timestep_input_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim) |
|
) |
|
|
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-05, |
|
resnet_act_fn="silu", |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads[i], |
|
downsample_padding=1, |
|
dual_cross_attention=False, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlock3DCrossAttn( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=time_embed_dim, |
|
resnet_eps=1e-05, |
|
resnet_act_fn="silu", |
|
output_scale_factor=1, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads[-1], |
|
resnet_groups=norm_num_groups, |
|
dual_cross_attention=False, |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=layers_per_block + 1, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=1e-05, |
|
resnet_act_fn="silu", |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
dual_cross_attention=False, |
|
resolution_idx=i, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-05) |
|
self.conv_act = get_activation("silu") |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
|
|
def disable_forward_chunking(self): |
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, None, 0) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value: bool = False) -> None: |
|
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
def enable_freeu(self, s1, s2, b1, b2): |
|
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stage blocks where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that |
|
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate the "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate the "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
for i, upsample_block in enumerate(self.up_blocks): |
|
setattr(upsample_block, "s1", s1) |
|
setattr(upsample_block, "s2", s2) |
|
setattr(upsample_block, "b1", b1) |
|
setattr(upsample_block, "b2", b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism.""" |
|
freeu_keys = {"s1", "s2", "b1", "b2"} |
|
for i, upsample_block in enumerate(self.up_blocks): |
|
for k in freeu_keys: |
|
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: |
|
setattr(upsample_block, k, None) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
fps: torch.Tensor, |
|
image_latents: torch.Tensor, |
|
image_embeddings: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]: |
|
r""" |
|
The [`I2VGenXLUNet`] forward method. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`. |
|
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
fps (`torch.Tensor`): Frames per second for the video being generated. Used as a "micro-condition". |
|
image_latents (`torch.Tensor`): Image encodings from the VAE. |
|
image_embeddings (`torch.Tensor`): |
|
Projection embeddings of the conditioning image computed with a vision encoder. |
|
encoder_hidden_states (`torch.Tensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
[`~models.unets.unet_3d_condition.UNet3DConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
batch_size, channels, num_frames, height, width = sample.shape |
|
|
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timesteps, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
t_emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
|
|
|
|
fps = fps.expand(fps.shape[0]) |
|
fps_emb = self.fps_embedding(self.time_proj(fps).to(dtype=self.dtype)) |
|
|
|
|
|
emb = t_emb + fps_emb |
|
emb = emb.repeat_interleave(repeats=num_frames, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
context_emb = sample.new_zeros(batch_size, 0, self.config.cross_attention_dim) |
|
context_emb = torch.cat([context_emb, encoder_hidden_states], dim=1) |
|
|
|
image_latents_for_context_embds = image_latents[:, :, :1, :] |
|
image_latents_context_embs = image_latents_for_context_embds.permute(0, 2, 1, 3, 4).reshape( |
|
image_latents_for_context_embds.shape[0] * image_latents_for_context_embds.shape[2], |
|
image_latents_for_context_embds.shape[1], |
|
image_latents_for_context_embds.shape[3], |
|
image_latents_for_context_embds.shape[4], |
|
) |
|
image_latents_context_embs = self.image_latents_context_embedding(image_latents_context_embs) |
|
|
|
_batch_size, _channels, _height, _width = image_latents_context_embs.shape |
|
image_latents_context_embs = image_latents_context_embs.permute(0, 2, 3, 1).reshape( |
|
_batch_size, _height * _width, _channels |
|
) |
|
context_emb = torch.cat([context_emb, image_latents_context_embs], dim=1) |
|
|
|
image_emb = self.context_embedding(image_embeddings) |
|
image_emb = image_emb.view(-1, self.config.in_channels, self.config.cross_attention_dim) |
|
context_emb = torch.cat([context_emb, image_emb], dim=1) |
|
context_emb = context_emb.repeat_interleave(repeats=num_frames, dim=0) |
|
|
|
image_latents = image_latents.permute(0, 2, 1, 3, 4).reshape( |
|
image_latents.shape[0] * image_latents.shape[2], |
|
image_latents.shape[1], |
|
image_latents.shape[3], |
|
image_latents.shape[4], |
|
) |
|
image_latents = self.image_latents_proj_in(image_latents) |
|
image_latents = ( |
|
image_latents[None, :] |
|
.reshape(batch_size, num_frames, channels, height, width) |
|
.permute(0, 3, 4, 1, 2) |
|
.reshape(batch_size * height * width, num_frames, channels) |
|
) |
|
image_latents = self.image_latents_temporal_encoder(image_latents) |
|
image_latents = image_latents.reshape(batch_size, height, width, num_frames, channels).permute(0, 4, 3, 1, 2) |
|
|
|
|
|
sample = torch.cat([sample, image_latents], dim=1) |
|
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) |
|
sample = self.conv_in(sample) |
|
sample = self.transformer_in( |
|
sample, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=context_emb, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=context_emb, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=context_emb, |
|
upsample_size=upsample_size, |
|
num_frames=num_frames, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
num_frames=num_frames, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
|
|
sample = self.conv_out(sample) |
|
|
|
|
|
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet3DConditionOutput(sample=sample) |
|
|