|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
ClapFeatureExtractor, |
|
ClapModel, |
|
GPT2Model, |
|
RobertaTokenizer, |
|
RobertaTokenizerFast, |
|
SpeechT5HifiGan, |
|
T5EncoderModel, |
|
T5Tokenizer, |
|
T5TokenizerFast, |
|
VitsModel, |
|
VitsTokenizer, |
|
) |
|
|
|
from ...models import AutoencoderKL |
|
from ...schedulers import KarrasDiffusionSchedulers |
|
from ...utils import ( |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_librosa_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline |
|
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel |
|
|
|
|
|
if is_librosa_available(): |
|
import librosa |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import scipy |
|
>>> import torch |
|
>>> from diffusers import AudioLDM2Pipeline |
|
|
|
>>> repo_id = "cvssp/audioldm2" |
|
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> # define the prompts |
|
>>> prompt = "The sound of a hammer hitting a wooden surface." |
|
>>> negative_prompt = "Low quality." |
|
|
|
>>> # set the seed for generator |
|
>>> generator = torch.Generator("cuda").manual_seed(0) |
|
|
|
>>> # run the generation |
|
>>> audio = pipe( |
|
... prompt, |
|
... negative_prompt=negative_prompt, |
|
... num_inference_steps=200, |
|
... audio_length_in_s=10.0, |
|
... num_waveforms_per_prompt=3, |
|
... generator=generator, |
|
... ).audios |
|
|
|
>>> # save the best audio sample (index 0) as a .wav file |
|
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0]) |
|
``` |
|
``` |
|
#Using AudioLDM2 for Text To Speech |
|
>>> import scipy |
|
>>> import torch |
|
>>> from diffusers import AudioLDM2Pipeline |
|
|
|
>>> repo_id = "anhnct/audioldm2_gigaspeech" |
|
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> # define the prompts |
|
>>> prompt = "A female reporter is speaking" |
|
>>> transcript = "wish you have a good day" |
|
|
|
>>> # set the seed for generator |
|
>>> generator = torch.Generator("cuda").manual_seed(0) |
|
|
|
>>> # run the generation |
|
>>> audio = pipe( |
|
... prompt, |
|
... transcription=transcript, |
|
... num_inference_steps=200, |
|
... audio_length_in_s=10.0, |
|
... num_waveforms_per_prompt=2, |
|
... generator=generator, |
|
... max_new_tokens=512, #Must set max_new_tokens equa to 512 for TTS |
|
... ).audios |
|
|
|
>>> # save the best audio sample (index 0) as a .wav file |
|
>>> scipy.io.wavfile.write("tts.wav", rate=16000, data=audio[0]) |
|
``` |
|
""" |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
inputs_embeds, |
|
attention_mask=None, |
|
past_key_values=None, |
|
**kwargs, |
|
): |
|
if past_key_values is not None: |
|
|
|
inputs_embeds = inputs_embeds[:, -1:] |
|
|
|
return { |
|
"inputs_embeds": inputs_embeds, |
|
"attention_mask": attention_mask, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
} |
|
|
|
|
|
class AudioLDM2Pipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-audio generation using AudioLDM2. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.ClapModel`]): |
|
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model |
|
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection), |
|
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The |
|
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to |
|
rank generated waveforms against the text prompt by computing similarity scores. |
|
text_encoder_2 ([`~transformers.T5EncoderModel`, `~transformers.VitsModel`]): |
|
Second frozen text-encoder. AudioLDM2 uses the encoder of |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant. Second frozen text-encoder use |
|
for TTS. AudioLDM2 uses the encoder of |
|
[Vits](https://huggingface.co/docs/transformers/model_doc/vits#transformers.VitsModel). |
|
projection_model ([`AudioLDM2ProjectionModel`]): |
|
A trained model used to linearly project the hidden-states from the first and second text encoder models |
|
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are |
|
concatenated to give the input to the language model. A Learned Position Embedding for the Vits |
|
hidden-states |
|
language_model ([`~transformers.GPT2Model`]): |
|
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected |
|
outputs from the two text encoders. |
|
tokenizer ([`~transformers.RobertaTokenizer`]): |
|
Tokenizer to tokenize text for the first frozen text-encoder. |
|
tokenizer_2 ([`~transformers.T5Tokenizer`, `~transformers.VitsTokenizer`]): |
|
Tokenizer to tokenize text for the second frozen text-encoder. |
|
feature_extractor ([`~transformers.ClapFeatureExtractor`]): |
|
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded audio latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
vocoder ([`~transformers.SpeechT5HifiGan`]): |
|
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: ClapModel, |
|
text_encoder_2: Union[T5EncoderModel, VitsModel], |
|
projection_model: AudioLDM2ProjectionModel, |
|
language_model: GPT2Model, |
|
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], |
|
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast, VitsTokenizer], |
|
feature_extractor: ClapFeatureExtractor, |
|
unet: AudioLDM2UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
vocoder: SpeechT5HifiGan, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
projection_model=projection_model, |
|
language_model=language_model, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
feature_extractor=feature_extractor, |
|
unet=unet, |
|
scheduler=scheduler, |
|
vocoder=vocoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
model_sequence = [ |
|
self.text_encoder.text_model, |
|
self.text_encoder.text_projection, |
|
self.text_encoder_2, |
|
self.projection_model, |
|
self.language_model, |
|
self.unet, |
|
self.vae, |
|
self.vocoder, |
|
self.text_encoder, |
|
] |
|
|
|
hook = None |
|
for cpu_offloaded_model in model_sequence: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
def generate_language_model( |
|
self, |
|
inputs_embeds: torch.Tensor = None, |
|
max_new_tokens: int = 8, |
|
**model_kwargs, |
|
): |
|
""" |
|
|
|
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs. |
|
|
|
Parameters: |
|
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
The sequence used as a prompt for the generation. |
|
max_new_tokens (`int`): |
|
Number of new tokens to generate. |
|
model_kwargs (`Dict[str, Any]`, *optional*): |
|
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward` |
|
function of the model. |
|
|
|
Return: |
|
`inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
The sequence of generated hidden-states. |
|
""" |
|
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens |
|
for _ in range(max_new_tokens): |
|
|
|
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs) |
|
|
|
|
|
output = self.language_model(**model_inputs, return_dict=True) |
|
|
|
next_hidden_states = output.last_hidden_state |
|
|
|
|
|
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1) |
|
|
|
|
|
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs) |
|
|
|
return inputs_embeds[:, -max_new_tokens:, :] |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_waveforms_per_prompt, |
|
do_classifier_free_guidance, |
|
transcription=None, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
generated_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_generated_prompt_embeds: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
negative_attention_mask: Optional[torch.LongTensor] = None, |
|
max_new_tokens: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
transcription (`str` or `List[str]`): |
|
transcription of text to speech |
|
device (`torch.device`): |
|
torch device |
|
num_waveforms_per_prompt (`int`): |
|
number of waveforms that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the audio generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.* |
|
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, |
|
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from |
|
`negative_prompt` input argument. |
|
generated_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, |
|
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input |
|
argument. |
|
negative_generated_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text |
|
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from |
|
`negative_prompt` input argument. |
|
attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will |
|
be computed from `prompt` input argument. |
|
negative_attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention |
|
mask will be computed from `negative_prompt` input argument. |
|
max_new_tokens (`int`, *optional*, defaults to None): |
|
The number of new tokens to generate with the GPT2 language model. |
|
Returns: |
|
prompt_embeds (`torch.Tensor`): |
|
Text embeddings from the Flan T5 model. |
|
attention_mask (`torch.LongTensor`): |
|
Attention mask to be applied to the `prompt_embeds`. |
|
generated_prompt_embeds (`torch.Tensor`): |
|
Text embeddings generated from the GPT2 langauge model. |
|
|
|
Example: |
|
|
|
```python |
|
>>> import scipy |
|
>>> import torch |
|
>>> from diffusers import AudioLDM2Pipeline |
|
|
|
>>> repo_id = "cvssp/audioldm2" |
|
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> # Get text embedding vectors |
|
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt( |
|
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs", |
|
... device="cuda", |
|
... do_classifier_free_guidance=True, |
|
... ) |
|
|
|
>>> # Pass text embeddings to pipeline for text-conditional audio generation |
|
>>> audio = pipe( |
|
... prompt_embeds=prompt_embeds, |
|
... attention_mask=attention_mask, |
|
... generated_prompt_embeds=generated_prompt_embeds, |
|
... num_inference_steps=200, |
|
... audio_length_in_s=10.0, |
|
... ).audios[0] |
|
|
|
>>> # save generated audio sample |
|
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) |
|
```""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] |
|
is_vits_text_encoder = isinstance(self.text_encoder_2, VitsModel) |
|
|
|
if is_vits_text_encoder: |
|
text_encoders = [self.text_encoder, self.text_encoder_2.text_encoder] |
|
else: |
|
text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
if prompt_embeds is None: |
|
prompt_embeds_list = [] |
|
attention_mask_list = [] |
|
|
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
use_prompt = isinstance( |
|
tokenizer, (RobertaTokenizer, RobertaTokenizerFast, T5Tokenizer, T5TokenizerFast) |
|
) |
|
text_inputs = tokenizer( |
|
prompt if use_prompt else transcription, |
|
padding="max_length" |
|
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) |
|
else True, |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
f"The following part of your input was truncated because {text_encoder.config.model_type} can " |
|
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_input_ids = text_input_ids.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
if text_encoder.config.model_type == "clap": |
|
prompt_embeds = text_encoder.get_text_features( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
prompt_embeds = prompt_embeds[:, None, :] |
|
|
|
attention_mask = attention_mask.new_ones((batch_size, 1)) |
|
elif is_vits_text_encoder: |
|
|
|
for text_input_id, text_attention_mask in zip(text_input_ids, attention_mask): |
|
for idx, phoneme_id in enumerate(text_input_id): |
|
if phoneme_id == 0: |
|
text_input_id[idx] = 182 |
|
text_attention_mask[idx] = 1 |
|
break |
|
prompt_embeds = text_encoder( |
|
text_input_ids, attention_mask=attention_mask, padding_mask=attention_mask.unsqueeze(-1) |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
attention_mask_list.append(attention_mask) |
|
|
|
projection_output = self.projection_model( |
|
hidden_states=prompt_embeds_list[0], |
|
hidden_states_1=prompt_embeds_list[1], |
|
attention_mask=attention_mask_list[0], |
|
attention_mask_1=attention_mask_list[1], |
|
) |
|
projected_prompt_embeds = projection_output.hidden_states |
|
projected_attention_mask = projection_output.attention_mask |
|
|
|
generated_prompt_embeds = self.generate_language_model( |
|
projected_prompt_embeds, |
|
attention_mask=projected_attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
attention_mask = ( |
|
attention_mask.to(device=device) |
|
if attention_mask is not None |
|
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device) |
|
) |
|
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) |
|
|
|
bs_embed, seq_len, hidden_size = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) |
|
|
|
|
|
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt) |
|
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len) |
|
|
|
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape |
|
|
|
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
generated_prompt_embeds = generated_prompt_embeds.view( |
|
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size |
|
) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
negative_prompt_embeds_list = [] |
|
negative_attention_mask_list = [] |
|
max_length = prompt_embeds.shape[1] |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
uncond_input = tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length |
|
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) |
|
else max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_input_ids = uncond_input.input_ids.to(device) |
|
negative_attention_mask = uncond_input.attention_mask.to(device) |
|
|
|
if text_encoder.config.model_type == "clap": |
|
negative_prompt_embeds = text_encoder.get_text_features( |
|
uncond_input_ids, |
|
attention_mask=negative_attention_mask, |
|
) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds[:, None, :] |
|
|
|
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1)) |
|
elif is_vits_text_encoder: |
|
negative_prompt_embeds = torch.zeros( |
|
batch_size, |
|
tokenizer.model_max_length, |
|
text_encoder.config.hidden_size, |
|
).to(dtype=self.text_encoder_2.dtype, device=device) |
|
negative_attention_mask = torch.zeros(batch_size, tokenizer.model_max_length).to( |
|
dtype=self.text_encoder_2.dtype, device=device |
|
) |
|
else: |
|
negative_prompt_embeds = text_encoder( |
|
uncond_input_ids, |
|
attention_mask=negative_attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
negative_attention_mask_list.append(negative_attention_mask) |
|
|
|
projection_output = self.projection_model( |
|
hidden_states=negative_prompt_embeds_list[0], |
|
hidden_states_1=negative_prompt_embeds_list[1], |
|
attention_mask=negative_attention_mask_list[0], |
|
attention_mask_1=negative_attention_mask_list[1], |
|
) |
|
negative_projected_prompt_embeds = projection_output.hidden_states |
|
negative_projected_attention_mask = projection_output.attention_mask |
|
|
|
negative_generated_prompt_embeds = self.generate_language_model( |
|
negative_projected_prompt_embeds, |
|
attention_mask=negative_projected_attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
negative_attention_mask = ( |
|
negative_attention_mask.to(device=device) |
|
if negative_attention_mask is not None |
|
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device) |
|
) |
|
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to( |
|
dtype=self.language_model.dtype, device=device |
|
) |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1) |
|
|
|
|
|
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt) |
|
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len) |
|
|
|
|
|
seq_len = negative_generated_prompt_embeds.shape[1] |
|
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view( |
|
batch_size * num_waveforms_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
attention_mask = torch.cat([negative_attention_mask, attention_mask]) |
|
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds]) |
|
|
|
return prompt_embeds, attention_mask, generated_prompt_embeds |
|
|
|
|
|
def mel_spectrogram_to_waveform(self, mel_spectrogram): |
|
if mel_spectrogram.dim() == 4: |
|
mel_spectrogram = mel_spectrogram.squeeze(1) |
|
|
|
waveform = self.vocoder(mel_spectrogram) |
|
|
|
waveform = waveform.cpu().float() |
|
return waveform |
|
|
|
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): |
|
if not is_librosa_available(): |
|
logger.info( |
|
"Automatic scoring of the generated audio waveforms against the input prompt text requires the " |
|
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were " |
|
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`." |
|
) |
|
return audio |
|
inputs = self.tokenizer(text, return_tensors="pt", padding=True) |
|
resampled_audio = librosa.resample( |
|
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate |
|
) |
|
inputs["input_features"] = self.feature_extractor( |
|
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate |
|
).input_features.type(dtype) |
|
inputs = inputs.to(device) |
|
|
|
|
|
logits_per_text = self.text_encoder(**inputs).logits_per_text |
|
|
|
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] |
|
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) |
|
return audio |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
audio_length_in_s, |
|
vocoder_upsample_factor, |
|
callback_steps, |
|
transcription=None, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
generated_prompt_embeds=None, |
|
negative_generated_prompt_embeds=None, |
|
attention_mask=None, |
|
negative_attention_mask=None, |
|
): |
|
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor |
|
if audio_length_in_s < min_audio_length_in_s: |
|
raise ValueError( |
|
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " |
|
f"is {audio_length_in_s}." |
|
) |
|
|
|
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: |
|
raise ValueError( |
|
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " |
|
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " |
|
f"{self.vae_scale_factor}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None): |
|
raise ValueError( |
|
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave " |
|
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None: |
|
raise ValueError( |
|
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that" |
|
"both arguments are specified" |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: |
|
raise ValueError( |
|
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" |
|
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" |
|
) |
|
|
|
if transcription is None: |
|
if self.text_encoder_2.config.model_type == "vits": |
|
raise ValueError("Cannot forward without transcription. Please make sure to" " have transcription") |
|
elif transcription is not None and ( |
|
not isinstance(transcription, str) and not isinstance(transcription, list) |
|
): |
|
raise ValueError(f"`transcription` has to be of type `str` or `list` but is {type(transcription)}") |
|
|
|
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None: |
|
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape: |
|
raise ValueError( |
|
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when " |
|
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != " |
|
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}." |
|
) |
|
if ( |
|
negative_attention_mask is not None |
|
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2] |
|
): |
|
raise ValueError( |
|
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" |
|
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}" |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(self.vocoder.config.model_in_dim) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
transcription: Union[str, List[str]] = None, |
|
audio_length_in_s: Optional[float] = None, |
|
num_inference_steps: int = 200, |
|
guidance_scale: float = 3.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_waveforms_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
generated_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_generated_prompt_embeds: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
negative_attention_mask: Optional[torch.LongTensor] = None, |
|
max_new_tokens: Optional[int] = None, |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
output_type: Optional[str] = "np", |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. |
|
transcription (`str` or `List[str]`, *optional*):\ |
|
The transcript for text to speech. |
|
audio_length_in_s (`int`, *optional*, defaults to 10.24): |
|
The length of the generated audio sample in seconds. |
|
num_inference_steps (`int`, *optional*, defaults to 200): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 3.5): |
|
A higher guidance scale value encourages the model to generate audio that is closely linked to the text |
|
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_waveforms_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic |
|
scoring is performed between the generated outputs and the text prompt. This scoring ranks the |
|
generated waveforms based on their cosine similarity with the text input in the joint text-audio |
|
embedding space. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
generated_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs, |
|
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input |
|
argument. |
|
negative_generated_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text |
|
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from |
|
`negative_prompt` input argument. |
|
attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will |
|
be computed from `prompt` input argument. |
|
negative_attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention |
|
mask will be computed from `negative_prompt` input argument. |
|
max_new_tokens (`int`, *optional*, defaults to None): |
|
Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will |
|
be taken from the config of the model. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
output_type (`str`, *optional*, defaults to `"np"`): |
|
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or |
|
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion |
|
model (LDM) output. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated audio. |
|
""" |
|
|
|
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate |
|
|
|
if audio_length_in_s is None: |
|
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor |
|
|
|
height = int(audio_length_in_s / vocoder_upsample_factor) |
|
|
|
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) |
|
if height % self.vae_scale_factor != 0: |
|
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor |
|
logger.info( |
|
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " |
|
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " |
|
f"denoising process." |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
audio_length_in_s, |
|
vocoder_upsample_factor, |
|
callback_steps, |
|
transcription, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
generated_prompt_embeds, |
|
negative_generated_prompt_embeds, |
|
attention_mask, |
|
negative_attention_mask, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_waveforms_per_prompt, |
|
do_classifier_free_guidance, |
|
transcription, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
generated_prompt_embeds=generated_prompt_embeds, |
|
negative_generated_prompt_embeds=negative_generated_prompt_embeds, |
|
attention_mask=attention_mask, |
|
negative_attention_mask=negative_attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_waveforms_per_prompt, |
|
num_channels_latents, |
|
height, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=generated_prompt_embeds, |
|
encoder_hidden_states_1=prompt_embeds, |
|
encoder_attention_mask_1=attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not output_type == "latent": |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
mel_spectrogram = self.vae.decode(latents).sample |
|
else: |
|
return AudioPipelineOutput(audios=latents) |
|
|
|
audio = self.mel_spectrogram_to_waveform(mel_spectrogram) |
|
|
|
audio = audio[:, :original_waveform_length] |
|
|
|
|
|
if num_waveforms_per_prompt > 1 and prompt is not None: |
|
audio = self.score_waveforms( |
|
text=prompt, |
|
audio=audio, |
|
num_waveforms_per_prompt=num_waveforms_per_prompt, |
|
device=device, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
|
|
if output_type == "np": |
|
audio = audio.numpy() |
|
|
|
if not return_dict: |
|
return (audio,) |
|
|
|
return AudioPipelineOutput(audios=audio) |
|
|