|
import os |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ...models.controlnet import ControlNetModel, ControlNetOutput |
|
from ...models.modeling_utils import ModelMixin |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MultiControlNetModel(ModelMixin): |
|
r""" |
|
Multiple `ControlNetModel` wrapper class for Multi-ControlNet |
|
|
|
This module is a wrapper for multiple instances of the `ControlNetModel`. The `forward()` API is designed to be |
|
compatible with `ControlNetModel`. |
|
|
|
Args: |
|
controlnets (`List[ControlNetModel]`): |
|
Provides additional conditioning to the unet during the denoising process. You must set multiple |
|
`ControlNetModel` as a list. |
|
""" |
|
|
|
def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]): |
|
super().__init__() |
|
self.nets = nn.ModuleList(controlnets) |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
controlnet_cond: List[torch.tensor], |
|
conditioning_scale: List[float], |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guess_mode: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[ControlNetOutput, Tuple]: |
|
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): |
|
down_samples, mid_sample = controlnet( |
|
sample=sample, |
|
timestep=timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
controlnet_cond=image, |
|
conditioning_scale=scale, |
|
class_labels=class_labels, |
|
timestep_cond=timestep_cond, |
|
attention_mask=attention_mask, |
|
added_cond_kwargs=added_cond_kwargs, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
guess_mode=guess_mode, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
if i == 0: |
|
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample |
|
else: |
|
down_block_res_samples = [ |
|
samples_prev + samples_curr |
|
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) |
|
] |
|
mid_block_res_sample += mid_sample |
|
|
|
return down_block_res_samples, mid_block_res_sample |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
variant: Optional[str] = None, |
|
): |
|
""" |
|
Save a model and its configuration file to a directory, so that it can be re-loaded using the |
|
`[`~pipelines.controlnet.MultiControlNetModel.from_pretrained`]` class method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful when in distributed training like |
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on |
|
the main process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one |
|
need to replace `torch.save` by another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
variant (`str`, *optional*): |
|
If specified, weights are saved in the format pytorch_model.<variant>.bin. |
|
""" |
|
for idx, controlnet in enumerate(self.nets): |
|
suffix = "" if idx == 0 else f"_{idx}" |
|
controlnet.save_pretrained( |
|
save_directory + suffix, |
|
is_main_process=is_main_process, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
variant=variant, |
|
) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models. |
|
|
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train |
|
the model, you should first set it back in training mode with `model.train()`. |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_path (`os.PathLike`): |
|
A path to a *directory* containing model weights saved using |
|
[`~diffusers.pipelines.controlnet.MultiControlNetModel.save_pretrained`], e.g., |
|
`./my_model_directory/controlnet`. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be refined to each |
|
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the |
|
same device. |
|
|
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
max_memory (`Dict`, *optional*): |
|
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each |
|
GPU and the available CPU RAM if unset. |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This |
|
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the |
|
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, |
|
setting this argument to `True` will raise an error. |
|
variant (`str`, *optional*): |
|
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is |
|
ignored when using `from_flax`. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the |
|
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from |
|
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`. |
|
""" |
|
idx = 0 |
|
controlnets = [] |
|
|
|
|
|
|
|
|
|
model_path_to_load = pretrained_model_path |
|
while os.path.isdir(model_path_to_load): |
|
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs) |
|
controlnets.append(controlnet) |
|
|
|
idx += 1 |
|
model_path_to_load = pretrained_model_path + f"_{idx}" |
|
|
|
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.") |
|
|
|
if len(controlnets) == 0: |
|
raise ValueError( |
|
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}." |
|
) |
|
|
|
return cls(controlnets) |
|
|