svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
5.53 kB
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class TransformationModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
text_embeds (`torch.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one
for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
projection_state: Optional[torch.Tensor] = None
last_hidden_state: torch.Tensor = None
hidden_states: Optional[Tuple[torch.Tensor]] = None
attentions: Optional[Tuple[torch.Tensor]] = None
class RobertaSeriesConfig(XLMRobertaConfig):
def __init__(
self,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
project_dim=512,
pooler_fn="cls",
learn_encoder=False,
use_attention_mask=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.project_dim = project_dim
self.pooler_fn = pooler_fn
self.learn_encoder = learn_encoder
self.use_attention_mask = use_attention_mask
class RobertaSeriesModelWithTransformation(RobertaPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler", r"logit_scale"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
base_model_prefix = "roberta"
config_class = RobertaSeriesConfig
def __init__(self, config):
super().__init__(config)
self.roberta = XLMRobertaModel(config)
self.transformation = nn.Linear(config.hidden_size, config.project_dim)
self.has_pre_transformation = getattr(config, "has_pre_transformation", False)
if self.has_pre_transformation:
self.transformation_pre = nn.Linear(config.hidden_size, config.project_dim)
self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
):
r""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=True if self.has_pre_transformation else output_hidden_states,
return_dict=return_dict,
)
if self.has_pre_transformation:
sequence_output2 = outputs["hidden_states"][-2]
sequence_output2 = self.pre_LN(sequence_output2)
projection_state2 = self.transformation_pre(sequence_output2)
return TransformationModelOutput(
projection_state=projection_state2,
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
else:
projection_state = self.transformation(outputs.last_hidden_state)
return TransformationModelOutput(
projection_state=projection_state,
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)