|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
XLMRobertaTokenizer, |
|
) |
|
|
|
from ...models import UNet2DConditionModel, VQModel |
|
from ...schedulers import DDIMScheduler |
|
from ...utils import ( |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from .text_encoder import MultilingualCLIP |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline |
|
>>> from diffusers.utils import load_image |
|
>>> import torch |
|
|
|
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe_prior.to("cuda") |
|
|
|
>>> prompt = "A red cartoon frog, 4k" |
|
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) |
|
|
|
>>> pipe = KandinskyImg2ImgPipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.to("cuda") |
|
|
|
>>> init_image = load_image( |
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
... "/kandinsky/frog.png" |
|
... ) |
|
|
|
>>> image = pipe( |
|
... prompt, |
|
... image=init_image, |
|
... image_embeds=image_emb, |
|
... negative_image_embeds=zero_image_emb, |
|
... height=768, |
|
... width=768, |
|
... num_inference_steps=100, |
|
... strength=0.2, |
|
... ).images |
|
|
|
>>> image[0].save("red_frog.png") |
|
``` |
|
""" |
|
|
|
|
|
def get_new_h_w(h, w, scale_factor=8): |
|
new_h = h // scale_factor**2 |
|
if h % scale_factor**2 != 0: |
|
new_h += 1 |
|
new_w = w // scale_factor**2 |
|
if w % scale_factor**2 != 0: |
|
new_w += 1 |
|
return new_h * scale_factor, new_w * scale_factor |
|
|
|
|
|
def prepare_image(pil_image, w=512, h=512): |
|
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) |
|
arr = np.array(pil_image.convert("RGB")) |
|
arr = arr.astype(np.float32) / 127.5 - 1 |
|
arr = np.transpose(arr, [2, 0, 1]) |
|
image = torch.from_numpy(arr).unsqueeze(0) |
|
return image |
|
|
|
|
|
class KandinskyImg2ImgPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for image-to-image generation using Kandinsky |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
text_encoder ([`MultilingualCLIP`]): |
|
Frozen text-encoder. |
|
tokenizer ([`XLMRobertaTokenizer`]): |
|
Tokenizer of class |
|
scheduler ([`DDIMScheduler`]): |
|
A scheduler to be used in combination with `unet` to generate image latents. |
|
unet ([`UNet2DConditionModel`]): |
|
Conditional U-Net architecture to denoise the image embedding. |
|
movq ([`VQModel`]): |
|
MoVQ image encoder and decoder |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->movq" |
|
|
|
def __init__( |
|
self, |
|
text_encoder: MultilingualCLIP, |
|
movq: VQModel, |
|
tokenizer: XLMRobertaTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: DDIMScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
movq=movq, |
|
) |
|
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
shape = latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = self.add_noise(latents, noise, latent_timestep) |
|
return latents |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=77, |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_input_ids = text_input_ids.to(device) |
|
text_mask = text_inputs.attention_mask.to(device) |
|
|
|
prompt_embeds, text_encoder_hidden_states = self.text_encoder( |
|
input_ids=text_input_ids, attention_mask=text_mask |
|
) |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=77, |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_input_ids = uncond_input.input_ids.to(device) |
|
uncond_text_mask = uncond_input.attention_mask.to(device) |
|
|
|
negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( |
|
input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask |
|
) |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32) |
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
|
|
return noisy_samples |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], |
|
image_embeds: torch.Tensor, |
|
negative_image_embeds: torch.Tensor, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 100, |
|
strength: float = 0.3, |
|
guidance_scale: float = 7.0, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, |
|
callback_steps: int = 1, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
image (`torch.Tensor`, `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
image_embeds (`torch.Tensor` or `List[torch.Tensor]`): |
|
The clip image embeddings for text prompt, that will be used to condition the image generation. |
|
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): |
|
The clip image embeddings for negative text prompt, will be used to condition the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
strength (`float`, *optional*, defaults to 0.3): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` |
|
""" |
|
|
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
device = self._execution_device |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
if isinstance(image_embeds, list): |
|
image_embeds = torch.cat(image_embeds, dim=0) |
|
if isinstance(negative_image_embeds, list): |
|
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( |
|
dtype=prompt_embeds.dtype, device=device |
|
) |
|
|
|
|
|
if not isinstance(image, list): |
|
image = [image] |
|
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): |
|
raise ValueError( |
|
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" |
|
) |
|
|
|
image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) |
|
image = image.to(dtype=prompt_embeds.dtype, device=device) |
|
|
|
latents = self.movq.encode(image)["latents"] |
|
latents = latents.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
|
|
timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
|
|
|
|
latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2 |
|
|
|
latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device) |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
|
|
height, width = get_new_h_w(height, width, self.movq_scale_factor) |
|
|
|
|
|
latents = self.prepare_latents( |
|
latents, |
|
latent_timestep, |
|
(batch_size, num_channels_latents, height, width), |
|
text_encoder_hidden_states.dtype, |
|
device, |
|
generator, |
|
self.scheduler, |
|
) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} |
|
noise_pred = self.unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
_, variance_pred_text = variance_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) |
|
|
|
if not ( |
|
hasattr(self.scheduler.config, "variance_type") |
|
and self.scheduler.config.variance_type in ["learned", "learned_range"] |
|
): |
|
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents, |
|
generator=generator, |
|
).prev_sample |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
image = self.movq.decode(latents, force_not_quantize=True)["sample"] |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if output_type not in ["pt", "np", "pil"]: |
|
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") |
|
|
|
if output_type in ["np", "pil"]: |
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|