|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Tuple |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
@dataclass |
|
class DifferentiableProjectiveCamera: |
|
""" |
|
Implements a batch, differentiable, standard pinhole camera |
|
""" |
|
|
|
origin: torch.Tensor |
|
x: torch.Tensor |
|
y: torch.Tensor |
|
z: torch.Tensor |
|
width: int |
|
height: int |
|
x_fov: float |
|
y_fov: float |
|
shape: Tuple[int] |
|
|
|
def __post_init__(self): |
|
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] |
|
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 |
|
assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 |
|
|
|
def resolution(self): |
|
return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32)) |
|
|
|
def fov(self): |
|
return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32)) |
|
|
|
def get_image_coords(self) -> torch.Tensor: |
|
""" |
|
:return: coords of shape (width * height, 2) |
|
""" |
|
pixel_indices = torch.arange(self.height * self.width) |
|
coords = torch.stack( |
|
[ |
|
pixel_indices % self.width, |
|
torch.div(pixel_indices, self.width, rounding_mode="trunc"), |
|
], |
|
axis=1, |
|
) |
|
return coords |
|
|
|
@property |
|
def camera_rays(self): |
|
batch_size, *inner_shape = self.shape |
|
inner_batch_size = int(np.prod(inner_shape)) |
|
|
|
coords = self.get_image_coords() |
|
coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape]) |
|
rays = self.get_camera_rays(coords) |
|
|
|
rays = rays.view(batch_size, inner_batch_size * self.height * self.width, 2, 3) |
|
|
|
return rays |
|
|
|
def get_camera_rays(self, coords: torch.Tensor) -> torch.Tensor: |
|
batch_size, *shape, n_coords = coords.shape |
|
assert n_coords == 2 |
|
assert batch_size == self.origin.shape[0] |
|
|
|
flat = coords.view(batch_size, -1, 2) |
|
|
|
res = self.resolution() |
|
fov = self.fov() |
|
|
|
fracs = (flat.float() / (res - 1)) * 2 - 1 |
|
fracs = fracs * torch.tan(fov / 2) |
|
|
|
fracs = fracs.view(batch_size, -1, 2) |
|
directions = ( |
|
self.z.view(batch_size, 1, 3) |
|
+ self.x.view(batch_size, 1, 3) * fracs[:, :, :1] |
|
+ self.y.view(batch_size, 1, 3) * fracs[:, :, 1:] |
|
) |
|
directions = directions / directions.norm(dim=-1, keepdim=True) |
|
rays = torch.stack( |
|
[ |
|
torch.broadcast_to(self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]), |
|
directions, |
|
], |
|
dim=2, |
|
) |
|
return rays.view(batch_size, *shape, 2, 3) |
|
|
|
def resize_image(self, width: int, height: int) -> "DifferentiableProjectiveCamera": |
|
""" |
|
Creates a new camera for the resized view assuming the aspect ratio does not change. |
|
""" |
|
assert width * self.height == height * self.width, "The aspect ratio should not change." |
|
return DifferentiableProjectiveCamera( |
|
origin=self.origin, |
|
x=self.x, |
|
y=self.y, |
|
z=self.z, |
|
width=width, |
|
height=height, |
|
x_fov=self.x_fov, |
|
y_fov=self.y_fov, |
|
) |
|
|
|
|
|
def create_pan_cameras(size: int) -> DifferentiableProjectiveCamera: |
|
origins = [] |
|
xs = [] |
|
ys = [] |
|
zs = [] |
|
for theta in np.linspace(0, 2 * np.pi, num=20): |
|
z = np.array([np.sin(theta), np.cos(theta), -0.5]) |
|
z /= np.sqrt(np.sum(z**2)) |
|
origin = -z * 4 |
|
x = np.array([np.cos(theta), -np.sin(theta), 0.0]) |
|
y = np.cross(z, x) |
|
origins.append(origin) |
|
xs.append(x) |
|
ys.append(y) |
|
zs.append(z) |
|
return DifferentiableProjectiveCamera( |
|
origin=torch.from_numpy(np.stack(origins, axis=0)).float(), |
|
x=torch.from_numpy(np.stack(xs, axis=0)).float(), |
|
y=torch.from_numpy(np.stack(ys, axis=0)).float(), |
|
z=torch.from_numpy(np.stack(zs, axis=0)).float(), |
|
width=size, |
|
height=size, |
|
x_fov=0.7, |
|
y_fov=0.7, |
|
shape=(1, len(xs)), |
|
) |
|
|