|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPVisionModel |
|
|
|
from ...models import PriorTransformer |
|
from ...schedulers import HeunDiscreteScheduler |
|
from ...utils import ( |
|
BaseOutput, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .renderer import ShapERenderer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from PIL import Image |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline |
|
>>> from diffusers.utils import export_to_gif, load_image |
|
|
|
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
>>> repo = "openai/shap-e-img2img" |
|
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) |
|
>>> pipe = pipe.to(device) |
|
|
|
>>> guidance_scale = 3.0 |
|
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" |
|
>>> image = load_image(image_url).convert("RGB") |
|
|
|
>>> images = pipe( |
|
... image, |
|
... guidance_scale=guidance_scale, |
|
... num_inference_steps=64, |
|
... frame_size=256, |
|
... ).images |
|
|
|
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif") |
|
``` |
|
""" |
|
|
|
|
|
@dataclass |
|
class ShapEPipelineOutput(BaseOutput): |
|
""" |
|
Output class for [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`]. |
|
|
|
Args: |
|
images (`torch.Tensor`) |
|
A list of images for 3D rendering. |
|
""" |
|
|
|
images: Union[PIL.Image.Image, np.ndarray] |
|
|
|
|
|
class ShapEImg2ImgPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
prior ([`PriorTransformer`]): |
|
The canonical unCLIP prior to approximate the image embedding from the text embedding. |
|
image_encoder ([`~transformers.CLIPVisionModel`]): |
|
Frozen image-encoder. |
|
image_processor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to process images. |
|
scheduler ([`HeunDiscreteScheduler`]): |
|
A scheduler to be used in combination with the `prior` model to generate image embedding. |
|
shap_e_renderer ([`ShapERenderer`]): |
|
Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF |
|
rendering method. |
|
""" |
|
|
|
model_cpu_offload_seq = "image_encoder->prior" |
|
_exclude_from_cpu_offload = ["shap_e_renderer"] |
|
|
|
def __init__( |
|
self, |
|
prior: PriorTransformer, |
|
image_encoder: CLIPVisionModel, |
|
image_processor: CLIPImageProcessor, |
|
scheduler: HeunDiscreteScheduler, |
|
shap_e_renderer: ShapERenderer, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
prior=prior, |
|
image_encoder=image_encoder, |
|
image_processor=image_processor, |
|
scheduler=scheduler, |
|
shap_e_renderer=shap_e_renderer, |
|
) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _encode_image( |
|
self, |
|
image, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
): |
|
if isinstance(image, List) and isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.image_processor(image, return_tensors="pt").pixel_values[0].unsqueeze(0) |
|
|
|
image = image.to(dtype=self.image_encoder.dtype, device=device) |
|
|
|
image_embeds = self.image_encoder(image)["last_hidden_state"] |
|
image_embeds = image_embeds[:, 1:, :].contiguous() |
|
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
negative_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
|
|
|
|
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
|
return image_embeds |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image: Union[PIL.Image.Image, List[PIL.Image.Image]], |
|
num_images_per_prompt: int = 1, |
|
num_inference_steps: int = 25, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
guidance_scale: float = 4.0, |
|
frame_size: int = 64, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image |
|
latents as image, but if passing latents directly it is not encoded again. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
frame_size (`int`, *optional*, default to 64): |
|
The width and height of each image frame of the generated 3D output. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`), `"latent"` (`torch.Tensor`), or mesh ([`MeshDecoderOutput`]). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] instead of a plain |
|
tuple. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images. |
|
""" |
|
|
|
if isinstance(image, PIL.Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, torch.Tensor): |
|
batch_size = image.shape[0] |
|
elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)): |
|
batch_size = len(image) |
|
else: |
|
raise ValueError( |
|
f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}" |
|
) |
|
|
|
device = self._execution_device |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) |
|
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
num_embeddings = self.prior.config.num_embeddings |
|
embedding_dim = self.prior.config.embedding_dim |
|
if latents is None: |
|
latents = self.prepare_latents( |
|
(batch_size, num_embeddings * embedding_dim), |
|
image_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
self.scheduler, |
|
) |
|
|
|
|
|
latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.prior( |
|
scaled_model_input, |
|
timestep=t, |
|
proj_embedding=image_embeds, |
|
).predicted_image_embedding |
|
|
|
|
|
noise_pred, _ = noise_pred.split( |
|
scaled_model_input.shape[2], dim=2 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) |
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
timestep=t, |
|
sample=latents, |
|
).prev_sample |
|
|
|
if output_type not in ["np", "pil", "latent", "mesh"]: |
|
raise ValueError( |
|
f"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}" |
|
) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if output_type == "latent": |
|
return ShapEPipelineOutput(images=latents) |
|
|
|
images = [] |
|
if output_type == "mesh": |
|
for i, latent in enumerate(latents): |
|
mesh = self.shap_e_renderer.decode_to_mesh( |
|
latent[None, :], |
|
device, |
|
) |
|
images.append(mesh) |
|
|
|
else: |
|
|
|
for i, latent in enumerate(latents): |
|
image = self.shap_e_renderer.decode_to_image( |
|
latent[None, :], |
|
device, |
|
size=frame_size, |
|
) |
|
images.append(image) |
|
|
|
images = torch.stack(images) |
|
|
|
images = images.cpu().numpy() |
|
|
|
if output_type == "pil": |
|
images = [self.numpy_to_pil(image) for image in images] |
|
|
|
if not return_dict: |
|
return (images,) |
|
|
|
return ShapEPipelineOutput(images=images) |
|
|