diffusers-sdxl-controlnet
/
src
/diffusers
/pipelines
/stable_cascade
/pipeline_stable_cascade_combined.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Union | |
import PIL | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from ...models import StableCascadeUNet | |
from ...schedulers import DDPMWuerstchenScheduler | |
from ...utils import is_torch_version, replace_example_docstring | |
from ..pipeline_utils import DiffusionPipeline | |
from ..wuerstchen.modeling_paella_vq_model import PaellaVQModel | |
from .pipeline_stable_cascade import StableCascadeDecoderPipeline | |
from .pipeline_stable_cascade_prior import StableCascadePriorPipeline | |
TEXT2IMAGE_EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import StableCascadeCombinedPipeline | |
>>> pipe = StableCascadeCombinedPipeline.from_pretrained( | |
... "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16 | |
... ) | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" | |
>>> images = pipe(prompt=prompt) | |
``` | |
""" | |
class StableCascadeCombinedPipeline(DiffusionPipeline): | |
""" | |
Combined Pipeline for text-to-image generation using Stable Cascade. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
tokenizer (`CLIPTokenizer`): | |
The decoder tokenizer to be used for text inputs. | |
text_encoder (`CLIPTextModel`): | |
The decoder text encoder to be used for text inputs. | |
decoder (`StableCascadeUNet`): | |
The decoder model to be used for decoder image generation pipeline. | |
scheduler (`DDPMWuerstchenScheduler`): | |
The scheduler to be used for decoder image generation pipeline. | |
vqgan (`PaellaVQModel`): | |
The VQGAN model to be used for decoder image generation pipeline. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `image_encoder`. | |
image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
prior_prior (`StableCascadeUNet`): | |
The prior model to be used for prior pipeline. | |
prior_scheduler (`DDPMWuerstchenScheduler`): | |
The scheduler to be used for prior pipeline. | |
""" | |
_load_connected_pipes = True | |
_optional_components = ["prior_feature_extractor", "prior_image_encoder"] | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModel, | |
decoder: StableCascadeUNet, | |
scheduler: DDPMWuerstchenScheduler, | |
vqgan: PaellaVQModel, | |
prior_prior: StableCascadeUNet, | |
prior_text_encoder: CLIPTextModel, | |
prior_tokenizer: CLIPTokenizer, | |
prior_scheduler: DDPMWuerstchenScheduler, | |
prior_feature_extractor: Optional[CLIPImageProcessor] = None, | |
prior_image_encoder: Optional[CLIPVisionModelWithProjection] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
decoder=decoder, | |
scheduler=scheduler, | |
vqgan=vqgan, | |
prior_text_encoder=prior_text_encoder, | |
prior_tokenizer=prior_tokenizer, | |
prior_prior=prior_prior, | |
prior_scheduler=prior_scheduler, | |
prior_feature_extractor=prior_feature_extractor, | |
prior_image_encoder=prior_image_encoder, | |
) | |
self.prior_pipe = StableCascadePriorPipeline( | |
prior=prior_prior, | |
text_encoder=prior_text_encoder, | |
tokenizer=prior_tokenizer, | |
scheduler=prior_scheduler, | |
image_encoder=prior_image_encoder, | |
feature_extractor=prior_feature_extractor, | |
) | |
self.decoder_pipe = StableCascadeDecoderPipeline( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
decoder=decoder, | |
scheduler=scheduler, | |
vqgan=vqgan, | |
) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) | |
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) | |
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): | |
r""" | |
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 | |
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a | |
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. | |
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. | |
""" | |
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) | |
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) | |
def progress_bar(self, iterable=None, total=None): | |
self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
def set_progress_bar_config(self, **kwargs): | |
self.prior_pipe.set_progress_bar_config(**kwargs) | |
self.decoder_pipe.set_progress_bar_config(**kwargs) | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, | |
height: int = 512, | |
width: int = 512, | |
prior_num_inference_steps: int = 60, | |
prior_guidance_scale: float = 4.0, | |
num_inference_steps: int = 12, | |
decoder_guidance_scale: float = 0.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation for the prior and decoder. | |
images (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, *optional*): | |
The images to guide the image generation for the prior. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, text embeddings will be generated from `prompt` input argument. | |
prompt_embeds_pooled (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* | |
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* | |
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`prior_guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting | |
`prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked | |
to the text `prompt`, usually at the expense of lower image quality. | |
prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): | |
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. For more specific timestep spacing, you can pass customized | |
`prior_timesteps` | |
num_inference_steps (`int`, *optional*, defaults to 12): | |
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at | |
the expense of slower inference. For more specific timestep spacing, you can pass customized | |
`timesteps` | |
decoder_guidance_scale (`float`, *optional*, defaults to 0.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
prior_callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: | |
int, callback_kwargs: Dict)`. | |
prior_callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the | |
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in | |
the `._callback_tensor_inputs` attribute of your pipeline class. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, | |
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
dtype = self.decoder_pipe.decoder.dtype | |
if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16: | |
raise ValueError( | |
"`StableCascadeCombinedPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype." | |
) | |
prior_outputs = self.prior_pipe( | |
prompt=prompt if prompt_embeds is None else None, | |
images=images, | |
height=height, | |
width=width, | |
num_inference_steps=prior_num_inference_steps, | |
guidance_scale=prior_guidance_scale, | |
negative_prompt=negative_prompt if negative_prompt_embeds is None else None, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
latents=latents, | |
output_type="pt", | |
return_dict=True, | |
callback_on_step_end=prior_callback_on_step_end, | |
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
) | |
image_embeddings = prior_outputs.image_embeddings | |
prompt_embeds = prior_outputs.get("prompt_embeds", None) | |
prompt_embeds_pooled = prior_outputs.get("prompt_embeds_pooled", None) | |
negative_prompt_embeds = prior_outputs.get("negative_prompt_embeds", None) | |
negative_prompt_embeds_pooled = prior_outputs.get("negative_prompt_embeds_pooled", None) | |
outputs = self.decoder_pipe( | |
image_embeddings=image_embeddings, | |
prompt=prompt if prompt_embeds is None else None, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=decoder_guidance_scale, | |
negative_prompt=negative_prompt if negative_prompt_embeds is None else None, | |
prompt_embeds=prompt_embeds, | |
prompt_embeds_pooled=prompt_embeds_pooled, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
generator=generator, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback_on_step_end=callback_on_step_end, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
) | |
return outputs | |