|
import math |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...models import ModelMixin |
|
from ...models.attention import FeedForward |
|
from ...models.attention_processor import Attention |
|
from ...models.embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed |
|
from ...models.modeling_outputs import Transformer2DModelOutput |
|
from ...models.normalization import AdaLayerNorm |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
logger.warning( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect." |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, |
|
\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for |
|
generating the random values works best when :math:`a \leq \text{mean} \leq b`. |
|
|
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
height=224, |
|
width=224, |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768, |
|
layer_norm=False, |
|
flatten=True, |
|
bias=True, |
|
use_pos_embed=True, |
|
): |
|
super().__init__() |
|
|
|
num_patches = (height // patch_size) * (width // patch_size) |
|
self.flatten = flatten |
|
self.layer_norm = layer_norm |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias |
|
) |
|
if layer_norm: |
|
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) |
|
else: |
|
self.norm = None |
|
|
|
self.use_pos_embed = use_pos_embed |
|
if self.use_pos_embed: |
|
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5)) |
|
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) |
|
|
|
def forward(self, latent): |
|
latent = self.proj(latent) |
|
if self.flatten: |
|
latent = latent.flatten(2).transpose(1, 2) |
|
if self.layer_norm: |
|
latent = self.norm(latent) |
|
if self.use_pos_embed: |
|
return latent + self.pos_embed |
|
else: |
|
return latent |
|
|
|
|
|
class SkipBlock(nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
self.skip_linear = nn.Linear(2 * dim, dim) |
|
|
|
|
|
self.norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x, skip): |
|
x = self.skip_linear(torch.cat([x, skip], dim=-1)) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class UTransformerBlock(nn.Module): |
|
r""" |
|
A modification of BasicTransformerBlock which supports pre-LayerNorm and post-LayerNorm configurations. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): |
|
Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (:obj: `int`, *optional*): |
|
The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (:obj: `bool`, *optional*, defaults to `False`): |
|
Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the query and key to float32 when performing the attention calculation. |
|
norm_elementwise_affine (`bool`, *optional*): |
|
Whether to use learnable per-element affine parameters during layer normalization. |
|
norm_type (`str`, defaults to `"layer_norm"`): |
|
The layer norm implementation to use. |
|
pre_layer_norm (`bool`, *optional*): |
|
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), |
|
as opposed to after ("post-LayerNorm"). Note that `BasicTransformerBlock` uses pre-LayerNorm, e.g. |
|
`pre_layer_norm = True`. |
|
final_dropout (`bool`, *optional*): |
|
Whether to use a final Dropout layer after the feedforward network. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
pre_layer_norm: bool = True, |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
|
|
self.pre_layer_norm = pre_layer_norm |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
timestep=None, |
|
cross_attention_kwargs=None, |
|
class_labels=None, |
|
): |
|
|
|
if self.pre_layer_norm: |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
else: |
|
norm_hidden_states = hidden_states |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
|
|
if not self.pre_layer_norm: |
|
if self.use_ada_layer_norm: |
|
attn_output = self.norm1(attn_output, timestep) |
|
else: |
|
attn_output = self.norm1(attn_output) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.attn2 is not None: |
|
|
|
if self.pre_layer_norm: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
else: |
|
norm_hidden_states = hidden_states |
|
|
|
|
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
|
|
if not self.pre_layer_norm: |
|
attn_output = self.norm2(attn_output, timestep) if self.use_ada_layer_norm else self.norm2(attn_output) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
if self.pre_layer_norm: |
|
norm_hidden_states = self.norm3(hidden_states) |
|
else: |
|
norm_hidden_states = hidden_states |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
|
|
if not self.pre_layer_norm: |
|
ff_output = self.norm3(ff_output) |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
class UniDiffuserBlock(nn.Module): |
|
r""" |
|
A modification of BasicTransformerBlock which supports pre-LayerNorm and post-LayerNorm configurations and puts the |
|
LayerNorms on the residual backbone of the block. This matches the transformer block in the [original UniDiffuser |
|
implementation](https://github.com/thu-ml/unidiffuser/blob/main/libs/uvit_multi_post_ln_v1.py#L104). |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): |
|
Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (:obj: `int`, *optional*): |
|
The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (:obj: `bool`, *optional*, defaults to `False`): |
|
Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the query and key to float() when performing the attention calculation. |
|
norm_elementwise_affine (`bool`, *optional*): |
|
Whether to use learnable per-element affine parameters during layer normalization. |
|
norm_type (`str`, defaults to `"layer_norm"`): |
|
The layer norm implementation to use. |
|
pre_layer_norm (`bool`, *optional*): |
|
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), |
|
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm |
|
(`pre_layer_norm = False`). |
|
final_dropout (`bool`, *optional*): |
|
Whether to use a final Dropout layer after the feedforward network. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
pre_layer_norm: bool = False, |
|
final_dropout: bool = True, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
|
|
self.pre_layer_norm = pre_layer_norm |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
timestep=None, |
|
cross_attention_kwargs=None, |
|
class_labels=None, |
|
): |
|
|
|
|
|
|
|
if self.pre_layer_norm: |
|
if self.use_ada_layer_norm: |
|
hidden_states = self.norm1(hidden_states, timestep) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
attn_output = self.attn1( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
|
|
if not self.pre_layer_norm: |
|
if self.use_ada_layer_norm: |
|
hidden_states = self.norm1(hidden_states, timestep) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
if self.attn2 is not None: |
|
|
|
if self.pre_layer_norm: |
|
hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
|
|
|
|
|
|
attn_output = self.attn2( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if not self.pre_layer_norm: |
|
hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
|
|
|
|
if self.pre_layer_norm: |
|
hidden_states = self.norm3(hidden_states) |
|
|
|
ff_output = self.ff(hidden_states) |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
|
|
if not self.pre_layer_norm: |
|
hidden_states = self.norm3(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
|
|
class UTransformer2DModel(ModelMixin, ConfigMixin): |
|
""" |
|
Transformer model based on the [U-ViT](https://github.com/baofff/U-ViT) architecture for image-like data. Compared |
|
to [`Transformer2DModel`], this model has skip connections between transformer blocks in a "U"-shaped fashion, |
|
similar to a U-Net. Supports only continuous (actual embeddings) inputs, which are embedded via a [`PatchEmbed`] |
|
layer and then reshaped to (b, t, d). |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input. |
|
out_channels (`int`, *optional*): |
|
The number of output channels; if `None`, defaults to `in_channels`. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
norm_num_groups (`int`, *optional*, defaults to `32`): |
|
The number of groups to use when performing Group Normalization. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
patch_size (`int`, *optional*, defaults to 2): |
|
The patch size to use in the patch embedding. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
use_linear_projection (int, *optional*): TODO: Not used |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used in each |
|
transformer block. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the query and key to float() when performing the attention calculation. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The Layer Normalization implementation to use. Defaults to `torch.nn.LayerNorm`. |
|
block_type (`str`, *optional*, defaults to `"unidiffuser"`): |
|
The transformer block implementation to use. If `"unidiffuser"`, has the LayerNorms on the residual |
|
backbone of each transformer block; otherwise has them in the attention/feedforward branches (the standard |
|
behavior in `diffusers`.) |
|
pre_layer_norm (`bool`, *optional*): |
|
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), |
|
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm |
|
(`pre_layer_norm = False`). |
|
norm_elementwise_affine (`bool`, *optional*): |
|
Whether to use learnable per-element affine parameters during layer normalization. |
|
use_patch_pos_embed (`bool`, *optional*): |
|
Whether to use position embeddings inside the patch embedding layer (`PatchEmbed`). |
|
final_dropout (`bool`, *optional*): |
|
Whether to use a final Dropout layer after the feedforward network. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = 2, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
block_type: str = "unidiffuser", |
|
pre_layer_norm: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
use_patch_pos_embed=False, |
|
ff_final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
|
|
assert in_channels is not None and patch_size is not None, "Patch input requires in_channels and patch_size." |
|
|
|
assert sample_size is not None, "UTransformer2DModel over patched input must provide sample_size" |
|
|
|
|
|
self.height = sample_size |
|
self.width = sample_size |
|
|
|
self.patch_size = patch_size |
|
self.pos_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
use_pos_embed=use_patch_pos_embed, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if block_type == "unidiffuser": |
|
block_cls = UniDiffuserBlock |
|
else: |
|
block_cls = UTransformerBlock |
|
self.transformer_in_blocks = nn.ModuleList( |
|
[ |
|
block_cls( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
pre_layer_norm=pre_layer_norm, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
final_dropout=ff_final_dropout, |
|
) |
|
for d in range(num_layers // 2) |
|
] |
|
) |
|
|
|
self.transformer_mid_block = block_cls( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
pre_layer_norm=pre_layer_norm, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
final_dropout=ff_final_dropout, |
|
) |
|
|
|
|
|
|
|
self.transformer_out_blocks = nn.ModuleList( |
|
[ |
|
nn.ModuleDict( |
|
{ |
|
"skip": SkipBlock( |
|
inner_dim, |
|
), |
|
"block": block_cls( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
pre_layer_norm=pre_layer_norm, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
final_dropout=ff_final_dropout, |
|
), |
|
} |
|
) |
|
for d in range(num_layers // 2) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
|
|
|
|
|
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
class_labels=None, |
|
cross_attention_kwargs=None, |
|
return_dict: bool = True, |
|
hidden_states_is_embedding: bool = False, |
|
unpatchify: bool = True, |
|
): |
|
""" |
|
Args: |
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. |
|
When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.long`, *optional*): |
|
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Optional class labels to be applied as an embedding in AdaLayerZeroNorm. Used to indicate class labels |
|
conditioning. |
|
cross_attention_kwargs (*optional*): |
|
Keyword arguments to supply to the cross attention layers, if used. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
hidden_states_is_embedding (`bool`, *optional*, defaults to `False`): |
|
Whether or not hidden_states is an embedding directly usable by the transformer. In this case we will |
|
ignore input handling (e.g. continuous, vectorized, etc.) and directly feed hidden_states into the |
|
transformer blocks. |
|
unpatchify (`bool`, *optional*, defaults to `True`): |
|
Whether to unpatchify the transformer output. |
|
|
|
Returns: |
|
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`: |
|
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
if not unpatchify and return_dict: |
|
raise ValueError( |
|
f"Cannot both define `unpatchify`: {unpatchify} and `return_dict`: {return_dict} since when" |
|
f" `unpatchify` is {unpatchify} the returned output is of shape (batch_size, seq_len, hidden_dim)" |
|
" rather than (batch_size, num_channels, height, width)." |
|
) |
|
|
|
|
|
if not hidden_states_is_embedding: |
|
hidden_states = self.pos_embed(hidden_states) |
|
|
|
|
|
|
|
|
|
skips = [] |
|
for in_block in self.transformer_in_blocks: |
|
hidden_states = in_block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
skips.append(hidden_states) |
|
|
|
|
|
hidden_states = self.transformer_mid_block(hidden_states) |
|
|
|
|
|
for out_block in self.transformer_out_blocks: |
|
hidden_states = out_block["skip"](hidden_states, skips.pop()) |
|
hidden_states = out_block["block"]( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
|
|
|
|
|
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
|
|
if unpatchify: |
|
|
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
else: |
|
output = hidden_states |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|
|
class UniDiffuserModel(ModelMixin, ConfigMixin): |
|
""" |
|
Transformer model for a image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model. This is a |
|
modification of [`UTransformer2DModel`] with input and output heads for the VAE-embedded latent image, the |
|
CLIP-embedded image, and the CLIP-embedded prompt (see paper for more details). |
|
|
|
Parameters: |
|
text_dim (`int`): The hidden dimension of the CLIP text model used to embed images. |
|
clip_img_dim (`int`): The hidden dimension of the CLIP vision model used to embed prompts. |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input. |
|
out_channels (`int`, *optional*): |
|
The number of output channels; if `None`, defaults to `in_channels`. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
norm_num_groups (`int`, *optional*, defaults to `32`): |
|
The number of groups to use when performing Group Normalization. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
patch_size (`int`, *optional*, defaults to 2): |
|
The patch size to use in the patch embedding. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
use_linear_projection (int, *optional*): TODO: Not used |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used in each |
|
transformer block. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the query and key to float32 when performing the attention calculation. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The Layer Normalization implementation to use. Defaults to `torch.nn.LayerNorm`. |
|
block_type (`str`, *optional*, defaults to `"unidiffuser"`): |
|
The transformer block implementation to use. If `"unidiffuser"`, has the LayerNorms on the residual |
|
backbone of each transformer block; otherwise has them in the attention/feedforward branches (the standard |
|
behavior in `diffusers`.) |
|
pre_layer_norm (`bool`, *optional*): |
|
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), |
|
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm |
|
(`pre_layer_norm = False`). |
|
norm_elementwise_affine (`bool`, *optional*): |
|
Whether to use learnable per-element affine parameters during layer normalization. |
|
use_patch_pos_embed (`bool`, *optional*): |
|
Whether to use position embeddings inside the patch embedding layer (`PatchEmbed`). |
|
ff_final_dropout (`bool`, *optional*): |
|
Whether to use a final Dropout layer after the feedforward network. |
|
use_data_type_embedding (`bool`, *optional*): |
|
Whether to use a data type embedding. This is only relevant for UniDiffuser-v1 style models; UniDiffuser-v1 |
|
is continue-trained from UniDiffuser-v0 on non-publically-available data and accepts a `data_type` |
|
argument, which can either be `1` to use the weights trained on non-publically-available data or `0` |
|
otherwise. This argument is subsequently embedded by the data type embedding, if used. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
text_dim: int = 768, |
|
clip_img_dim: int = 512, |
|
num_text_tokens: int = 77, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
block_type: str = "unidiffuser", |
|
pre_layer_norm: bool = False, |
|
use_timestep_embedding=False, |
|
norm_elementwise_affine: bool = True, |
|
use_patch_pos_embed=False, |
|
ff_final_dropout: bool = True, |
|
use_data_type_embedding: bool = False, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
|
|
assert sample_size is not None, "UniDiffuserModel over patched input must provide sample_size" |
|
self.sample_size = sample_size |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
|
|
self.patch_size = patch_size |
|
|
|
self.num_patches = (self.sample_size // patch_size) * (self.sample_size // patch_size) |
|
|
|
|
|
|
|
|
|
self.vae_img_in = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=self.inner_dim, |
|
use_pos_embed=use_patch_pos_embed, |
|
) |
|
self.clip_img_in = nn.Linear(clip_img_dim, self.inner_dim) |
|
self.text_in = nn.Linear(text_dim, self.inner_dim) |
|
|
|
|
|
self.timestep_img_proj = Timesteps( |
|
self.inner_dim, |
|
flip_sin_to_cos=True, |
|
downscale_freq_shift=0, |
|
) |
|
self.timestep_img_embed = ( |
|
TimestepEmbedding( |
|
self.inner_dim, |
|
4 * self.inner_dim, |
|
out_dim=self.inner_dim, |
|
) |
|
if use_timestep_embedding |
|
else nn.Identity() |
|
) |
|
|
|
self.timestep_text_proj = Timesteps( |
|
self.inner_dim, |
|
flip_sin_to_cos=True, |
|
downscale_freq_shift=0, |
|
) |
|
self.timestep_text_embed = ( |
|
TimestepEmbedding( |
|
self.inner_dim, |
|
4 * self.inner_dim, |
|
out_dim=self.inner_dim, |
|
) |
|
if use_timestep_embedding |
|
else nn.Identity() |
|
) |
|
|
|
|
|
self.num_text_tokens = num_text_tokens |
|
self.num_tokens = 1 + 1 + num_text_tokens + 1 + self.num_patches |
|
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, self.inner_dim)) |
|
self.pos_embed_drop = nn.Dropout(p=dropout) |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
|
|
self.use_data_type_embedding = use_data_type_embedding |
|
if self.use_data_type_embedding: |
|
self.data_type_token_embedding = nn.Embedding(2, self.inner_dim) |
|
self.data_type_pos_embed_token = nn.Parameter(torch.zeros(1, 1, self.inner_dim)) |
|
|
|
|
|
self.transformer = UTransformer2DModel( |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
num_layers=num_layers, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_bias=attention_bias, |
|
sample_size=sample_size, |
|
num_vector_embeds=num_vector_embeds, |
|
patch_size=patch_size, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
block_type=block_type, |
|
pre_layer_norm=pre_layer_norm, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
use_patch_pos_embed=use_patch_pos_embed, |
|
ff_final_dropout=ff_final_dropout, |
|
) |
|
|
|
|
|
patch_dim = (patch_size**2) * out_channels |
|
self.vae_img_out = nn.Linear(self.inner_dim, patch_dim) |
|
self.clip_img_out = nn.Linear(self.inner_dim, clip_img_dim) |
|
self.text_out = nn.Linear(self.inner_dim, text_dim) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"pos_embed"} |
|
|
|
def forward( |
|
self, |
|
latent_image_embeds: torch.Tensor, |
|
image_embeds: torch.Tensor, |
|
prompt_embeds: torch.Tensor, |
|
timestep_img: Union[torch.Tensor, float, int], |
|
timestep_text: Union[torch.Tensor, float, int], |
|
data_type: Optional[Union[torch.Tensor, float, int]] = 1, |
|
encoder_hidden_states=None, |
|
cross_attention_kwargs=None, |
|
): |
|
""" |
|
Args: |
|
latent_image_embeds (`torch.Tensor` of shape `(batch size, latent channels, height, width)`): |
|
Latent image representation from the VAE encoder. |
|
image_embeds (`torch.Tensor` of shape `(batch size, 1, clip_img_dim)`): |
|
CLIP-embedded image representation (unsqueezed in the first dimension). |
|
prompt_embeds (`torch.Tensor` of shape `(batch size, seq_len, text_dim)`): |
|
CLIP-embedded text representation. |
|
timestep_img (`torch.long` or `float` or `int`): |
|
Current denoising step for the image. |
|
timestep_text (`torch.long` or `float` or `int`): |
|
Current denoising step for the text. |
|
data_type: (`torch.int` or `float` or `int`, *optional*, defaults to `1`): |
|
Only used in UniDiffuser-v1-style models. Can be either `1`, to use weights trained on nonpublic data, |
|
or `0` otherwise. |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
cross_attention_kwargs (*optional*): |
|
Keyword arguments to supply to the cross attention layers, if used. |
|
|
|
|
|
Returns: |
|
`tuple`: Returns relevant parts of the model's noise prediction: the first element of the tuple is tbe VAE |
|
image embedding, the second element is the CLIP image embedding, and the third element is the CLIP text |
|
embedding. |
|
""" |
|
batch_size = latent_image_embeds.shape[0] |
|
|
|
|
|
|
|
vae_hidden_states = self.vae_img_in(latent_image_embeds) |
|
clip_hidden_states = self.clip_img_in(image_embeds) |
|
text_hidden_states = self.text_in(prompt_embeds) |
|
|
|
num_text_tokens, num_img_tokens = text_hidden_states.size(1), vae_hidden_states.size(1) |
|
|
|
|
|
if not torch.is_tensor(timestep_img): |
|
timestep_img = torch.tensor([timestep_img], dtype=torch.long, device=vae_hidden_states.device) |
|
|
|
|
|
timestep_img = timestep_img * torch.ones(batch_size, dtype=timestep_img.dtype, device=timestep_img.device) |
|
|
|
timestep_img_token = self.timestep_img_proj(timestep_img) |
|
|
|
|
|
timestep_img_token = timestep_img_token.to(dtype=self.dtype) |
|
timestep_img_token = self.timestep_img_embed(timestep_img_token) |
|
timestep_img_token = timestep_img_token.unsqueeze(dim=1) |
|
|
|
|
|
if not torch.is_tensor(timestep_text): |
|
timestep_text = torch.tensor([timestep_text], dtype=torch.long, device=vae_hidden_states.device) |
|
|
|
|
|
timestep_text = timestep_text * torch.ones(batch_size, dtype=timestep_text.dtype, device=timestep_text.device) |
|
|
|
timestep_text_token = self.timestep_text_proj(timestep_text) |
|
|
|
|
|
timestep_text_token = timestep_text_token.to(dtype=self.dtype) |
|
timestep_text_token = self.timestep_text_embed(timestep_text_token) |
|
timestep_text_token = timestep_text_token.unsqueeze(dim=1) |
|
|
|
|
|
if self.use_data_type_embedding: |
|
assert data_type is not None, "data_type must be supplied if the model uses a data type embedding" |
|
if not torch.is_tensor(data_type): |
|
data_type = torch.tensor([data_type], dtype=torch.int, device=vae_hidden_states.device) |
|
|
|
|
|
data_type = data_type * torch.ones(batch_size, dtype=data_type.dtype, device=data_type.device) |
|
|
|
data_type_token = self.data_type_token_embedding(data_type).unsqueeze(dim=1) |
|
hidden_states = torch.cat( |
|
[ |
|
timestep_img_token, |
|
timestep_text_token, |
|
data_type_token, |
|
text_hidden_states, |
|
clip_hidden_states, |
|
vae_hidden_states, |
|
], |
|
dim=1, |
|
) |
|
else: |
|
hidden_states = torch.cat( |
|
[timestep_img_token, timestep_text_token, text_hidden_states, clip_hidden_states, vae_hidden_states], |
|
dim=1, |
|
) |
|
|
|
|
|
|
|
|
|
if self.use_data_type_embedding: |
|
pos_embed = torch.cat( |
|
[self.pos_embed[:, : 1 + 1, :], self.data_type_pos_embed_token, self.pos_embed[:, 1 + 1 :, :]], dim=1 |
|
) |
|
else: |
|
pos_embed = self.pos_embed |
|
hidden_states = hidden_states + pos_embed |
|
hidden_states = self.pos_embed_drop(hidden_states) |
|
|
|
|
|
hidden_states = self.transformer( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=None, |
|
class_labels=None, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
hidden_states_is_embedding=True, |
|
unpatchify=False, |
|
)[0] |
|
|
|
|
|
|
|
if self.use_data_type_embedding: |
|
( |
|
t_img_token_out, |
|
t_text_token_out, |
|
data_type_token_out, |
|
text_out, |
|
img_clip_out, |
|
img_vae_out, |
|
) = hidden_states.split((1, 1, 1, num_text_tokens, 1, num_img_tokens), dim=1) |
|
else: |
|
t_img_token_out, t_text_token_out, text_out, img_clip_out, img_vae_out = hidden_states.split( |
|
(1, 1, num_text_tokens, 1, num_img_tokens), dim=1 |
|
) |
|
|
|
img_vae_out = self.vae_img_out(img_vae_out) |
|
|
|
|
|
height = width = int(img_vae_out.shape[1] ** 0.5) |
|
img_vae_out = img_vae_out.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
img_vae_out = torch.einsum("nhwpqc->nchpwq", img_vae_out) |
|
img_vae_out = img_vae_out.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
|
|
img_clip_out = self.clip_img_out(img_clip_out) |
|
|
|
text_out = self.text_out(text_out) |
|
|
|
return img_vae_out, img_clip_out, text_out |
|
|