svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
4.95 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Generic utilities
"""
from collections import OrderedDict
from dataclasses import fields, is_dataclass
from typing import Any, Tuple
import numpy as np
from .import_utils import is_torch_available, is_torch_version
def is_tensor(x) -> bool:
"""
Tests if `x` is a `torch.Tensor` or `np.ndarray`.
"""
if is_torch_available():
import torch
if isinstance(x, torch.Tensor):
return True
return isinstance(x, np.ndarray)
class BaseOutput(OrderedDict):
"""
Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
Python dictionary.
<Tip warning={true}>
You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple
first.
</Tip>
"""
def __init_subclass__(cls) -> None:
"""Register subclasses as pytree nodes.
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
`static_graph=True` with modules that output `ModelOutput` subclasses.
"""
if is_torch_available():
import torch.utils._pytree
if is_torch_version("<", "2.2"):
torch.utils._pytree._register_pytree_node(
cls,
torch.utils._pytree._dict_flatten,
lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
)
else:
torch.utils._pytree.register_pytree_node(
cls,
torch.utils._pytree._dict_flatten,
lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
)
def __post_init__(self) -> None:
class_fields = fields(self)
# Safety and consistency checks
if not len(class_fields):
raise ValueError(f"{self.__class__.__name__} has no fields.")
first_field = getattr(self, class_fields[0].name)
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and isinstance(first_field, dict):
for key, value in first_field.items():
self[key] = value
else:
for field in class_fields:
v = getattr(self, field.name)
if v is not None:
self[field.name] = v
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __getitem__(self, k: Any) -> Any:
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name: Any, value: Any) -> None:
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def __reduce__(self):
if not is_dataclass(self):
return super().__reduce__()
callable, _args, *remaining = super().__reduce__()
args = tuple(getattr(self, field.name) for field in fields(self))
return callable, args, *remaining
def to_tuple(self) -> Tuple[Any, ...]:
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())